Measurements of *B* mesons mixing phases at LHCb

Mary Richardson-Slipper

on behalf of the LHCb Collaboration

ICHEP 2024, Prague, Czech Republic

THE UNIVERSITY of EDINBURGH

Outline

- Introduction
 - CKM matrix
 - The LHCb detector
- Measurement of $\sin(2\beta)$ with $B^0 \rightarrow J/\psi K_S^0$
- Measurement of ϕ_s with $B_s^0 \to J/\psi\phi$
- Measurement of $\phi_s^{s\bar{s}s}$ with $B_s^0 \to \phi\phi$
- Measurement of $\Delta\Gamma_s$ with $B_s^0 \to J/\psi \eta'$ and $B_s^0 \to J/\psi \pi^+ \pi^-$
- Future prospects and summary

The CKM matrix

 Quark flavour mixing determined by the CKM matrix – connects weak eigenstates to mass eigenstates

$$V_{\text{CKM}} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$$

 Unitarity of CKM matrix leads to the unitarity relations that form triangles in the complex plane

$$\sum_{k} V_{ik} V_{jk}^* = 0$$

• CP violation in the SM comes from complex phase in CKM matrix

CKMfitter Group (J. Charles *et al.*), Eur. Phys. J. C41, 1-131 (2005) [hep-ph/0406184], updated results and plots available at: <u>http://ckmfitter.in2p3.fr</u>

Mary Richardson-Slipper (University of Edinburgh)

Alves, A., & others (2008). The LHCb Detector at the LHC. *JINST, 3, S08005.*

The LHCb experiment – Run 1 and Run 2

Phys. Rev. Lett. 132, 021801

Measurement of $sin(2\beta)$ with $B^0 \rightarrow J/\psi K_S^0$

Using Run 2 data (6fb⁻¹). Three modes:

- $B^0 \rightarrow J/\psi (\rightarrow \mu^+ \mu^-) K_S^0$, 306k events
- $B^0 \rightarrow J/\psi(\rightarrow e^+e^-)K_S^0$, 42k events
- $B^0 \rightarrow \psi(2S) (\rightarrow \mu^+ \mu^-) K_S^0$, 23k events

measure CP violation parameters S and C

CP violation
parameters
$$B^0 - \overline{B}^0$$

mixing
frequency

$$\mathcal{A}^{CP}(t) = \frac{\Gamma(\bar{B}^0(t) \to f) - \Gamma(B^0(t) \to f)}{\Gamma(\bar{B}^0(t) \to f) + \Gamma(B^0(t) \to f)} = \frac{S\sin(\Delta m_d t) - C\cos(\Delta m_d t)}{\cosh\left(\frac{1}{2}\Delta\Gamma_d t\right) + \mathcal{A}_{\Delta\Gamma}\sinh\left(\frac{1}{2}\Delta\Gamma_d t\right)}$$

$$\begin{aligned} \mathcal{A}^{CP}(t) &\approx S \sin(\Delta m_d t) - C \cos(\Delta m_d t) \\ S &= \sin(2\beta + \Delta \phi_d + \Delta \phi_d^{NP}) \end{aligned}$$

contributions from penguin topologies CKM suppressed: small in SM possible contributions from new physics *B* mass eigenstate decay width difference, compatible with zero

Measurement of ϕ_s with $B_s^0 \to J/\psi\phi$

- A golden mode for study of CP violation
- Probe of CKM parameter β_s
 - Neglecting subleading loop contributions, CP violating phase $\phi_s^{c\bar{c}s} = -2\beta_s$
 - $\beta_s \equiv \arg[-(V_{ts}V_{tb}^*)/(V_{cs}V_{cb}^*]$
- SM prediction very precise $-2\beta_s^{SM} = -0.037 \pm 0.001$ rad.

Measurement of ϕ_s with $B_s^0 \to J/\psi\phi$

- $\phi_s^{c\bar{c}s}$ extracted from 4D fit to decay time and three helicity angle distributions
 - Disentangle CP odd and even components
 - Flavour tagging and decay time acceptance accounted for
- Fit results using rull Run 2 dataset with 349k events:

 $\phi_s = -0.039 \pm 0.022$ (stat.) ± 0.006 (syst.) rad.

- Most precise measurement of ϕ_s to date and consistent with the SM prediction

Phys. Rev. Lett. 131, 171802

Measurement of
$$\phi_s^{s\bar{s}s}$$
 with $B_s^0 \to \phi \phi$

- Another golden mode of LHCb
- Probe of CP violation in penguindominated decays
- Experimentally clean
- CP violation in mixing and decay predicted to cancel in the SM $\phi_s^{s\bar{s}s} = \phi^M - \phi^D \approx 0$ Upper limit: 0.02 rad.^[1]
- Significant deviation from zero is clear signature of BSM physics

[1] Matthaeus Bartsch, Gerhard Buchalla, & Christina Kraus. (2008). <u>B -> V L V L</u> <u>Decays at Next-to-Leading Order in QCD</u>.

Measurement of $\phi_s^{s\bar{s}s}$ with $B_s^0 \to \phi \phi$

- Value of $\phi_s^{s\bar{s}s}$ extracted from 4D fit to decay time and three helicity angle distributions
- Fit results using full Run 2 dataset with 15.8k events:

 $\phi_s^{s\bar{s}s} = -0.042 \pm 0.075$ (stat.) ± 0.009 (syst.) rad

 Most precise measurement of time-dependent CP asymmetry in penguin dominated *B* decays to date and consistent with the SM prediction

Measurement of $\Delta \Gamma_s$ with $B_s^0 \rightarrow J/\psi \eta'$ and $B_s^0 \rightarrow J/\psi \pi^+ \pi^-$ Since ϕ_s small, to go σ_s

Tensions exist in measurements of $\Delta\Gamma_s$ using $B_s^0 \rightarrow J/\psi\phi$ from LHCb, ATLAS and CMS

Since ϕ_s small, to good approximation

- CP-even measures light lifetime
- CP-odd measures heavy lifetime

 $\Delta\Gamma_s$ is measured from decay-width difference between

- CP-even decay $B_s^0 \rightarrow J/\psi \eta'$ and
- $B_s^0 \rightarrow J/\psi \pi^+ \pi^-$ which is CP-odd via the $f_0(980)$ resonance

Independent cross-check!

Future prospects

- Measurements statistically limited
- Exciting era of LHCb
 Upgrade I
 - Taking data at higher instantaneous luminosity and with fully software trigger

	LHCb Upgrade I
$\sin 2\beta$, with $B^0 \to J/\psi K_{\rm s}^0$	0.011
ϕ_s , with $B_s^0 \to J/\psi\phi$	$14 \mathrm{\ mrad}$
$\phi_s^{s\bar{s}s},$ with $B^0_s\to\phi\phi$	39 mrad

Table adapted from Aaij, R., & others (2018). Physics case for an LHCb Upgrade II - Opportunities in flavour physics, and beyond, in the HL-LHC era.

Table 3.1: Statistical sensitivity on $\phi_s^{s\bar{s}s}$ and $\phi_s^{d\bar{d}s}$.							
Deser mode	$\sigma(\text{stat.}) \text{ [rad]}$						
Decay mode	$3~{\rm fb}^{-1}$	$23~{\rm fb}^{-1}$	$50 \ {\rm fb}^{-1}$	$300~{\rm fb}^{-1}$			
$B_s^0 o \phi \phi$	0.154	0.039	0.026	0.011			
$B_s^0 \rightarrow (K^+\pi^-)(K^-\pi^+)$ (inclusive)	0.129	0.033	0.022	0.009			
$B_s^0 \to K^*(892)^0 \overline{K}^*(892)^0$	_	0.127	0.086	0.035			

Aaij, R., & others (2018). Physics case for an LHCb Upgrade II - Opportunities in flavour physics, and beyond, in the HL-LHC era.

Summary

- World-leading sensitivity from LHCb measurements of B meson mixing phases
- CKM picture is holding strong for now
- So far, no evidence for new physics
- Exciting times ahead with LHCb Upgrade I underway and Upgrade II to come

Backup slides

Measurement of
$$sin(2\beta)$$
 with $B^0 \rightarrow J/\psi K_S^0$

Time dependent decay rate expressed as $\mathcal{P}(t,d,n) \propto e^{-\Gamma_d t/\hbar} \{ [1 + d(1 - 2\omega^+(\eta))] P_{B^0}(t) + [1 + d(1 - 2\omega^-(\eta))] P_{\overline{B}^0}(t) \}$ With

 $P_{B^{0},\bar{B}^{0}}(t) \propto (1 \mp \alpha) (1 \mp \Delta \epsilon_{\text{tag}}) [1 \mp S \sin(\Delta m_{d} t) \pm C \cos(\Delta m_{d} t)]$

CP asymmetry as function of decay time $\mathcal{A}_{int}^{CP} = -(\Sigma_j^N \kappa_j d_j D_j) / (\Sigma_j^N \kappa_j D_j^2)$ Where $D_j = (1 - \omega_j^+ - \omega_j^-)$ is tagging dilution, d_j is tagging decision and κ_j is the signal event weight

$$B_{S}^{0} \rightarrow J/\psi \phi \text{ differential decay rate} \\ \frac{\mathrm{d}^{4}\Gamma(B_{s}^{0} \rightarrow J/\psi K^{+}K^{-})}{\mathrm{d}t \,\mathrm{d}\Omega} \propto \sum_{k=1}^{10} h_{k}(t) f_{k}(\Omega).$$

The time-dependent functions $h_k(t)$ can be written as

 $h_k(t) = N_k e^{-\Gamma_s t} \left[a_k \cosh\left(\frac{1}{2}\Delta\Gamma_s t\right) + b_k \sinh\left(\frac{1}{2}\Delta\Gamma_s t\right) \right]$ $+ c_k \cos(\Delta m_s t) + d_k \sin(\Delta m_s t)$] $f_k(\theta_\mu, \theta_K, \varphi_h)$ N_k k b_k d_k a_k c_k $\frac{2\cos^2\theta_K\sin^2\theta_\mu}{\sin^2\theta_K\left(1-\sin^2\theta_\mu\cos^2\varphi_h\right)}$ $|A_0|^2$ 1 C-S1 D $|A_{\parallel}|^2$ D $\mathbf{2}$ C-S1 $\frac{\sin^2 \theta_K \left(1 - \sin^2 \theta_\mu \sin^2 \varphi_h\right)}{\sin^2 \theta_K \sin^2 \theta_\mu \sin 2\varphi_h}$ S $|A_{\perp}|^2$ -DC3 $C\sin(\delta_{\perp} - \delta_{\parallel})$ $|A_{\parallel}A_{\perp}|$ $S\cos(\delta_{\perp}-\delta_{\parallel})$ $\sin(\delta_{\perp} - \delta_{\parallel})$ $D\cos(\delta_{\perp}-\delta_{\parallel})$ 4 $\frac{1}{2}\sqrt{2}\sin 2\theta_K \sin 2\theta_\mu \cos \varphi_h$ $|A_0A_{\parallel}|$ $\cos(\delta_{\parallel} - \delta_0)$ $D\cos(\delta_{\parallel}-\delta_0)$ $C\cos(\delta_{\parallel}-\delta_0)$ $-S\cos(\delta_{\parallel}-\delta_{0})$ 5 $-\frac{1}{2}\sqrt{2}\sin 2\theta_K \sin 2\theta_\mu \sin \varphi_h$ $|A_0A_\perp|$ $\mathbf{6}$ $C\sin(\delta_{\perp}-\delta_0)$ $S\cos(\delta_{\perp}-\delta_0)$ $\sin(\delta_{\perp} - \delta_0)$ $D\cos(\delta_{\perp}-\delta_0)$ $\frac{2}{3}\sin^2\theta_{\mu}$ $|A_{\rm S}|^2$ -DCS7 $\frac{1}{3}\sqrt{6}\sin\theta_K\sin 2\theta_\mu\cos\varphi_h$ 8 $|A_{\rm S}A_{\parallel}|$ $C\cos(\delta_{\parallel}-\delta_{\rm S})$ $S\sin(\delta_{\parallel}-\delta_{\rm S})$ $\cos(\delta_{\parallel} - \delta_{\rm S})$ $D\sin(\delta_{\parallel}-\delta_{\rm S})$ $-\frac{1}{3}\sqrt{6}\sin\theta_K\sin2\theta_\mu\sin\varphi_h$ $|A_{\rm S}A_{\perp}|$ $\sin(\delta_{\perp} - \delta_{\rm S})$ $-D\sin(\delta_{\perp}-\delta_{\rm S})$ $C\sin(\delta_{\perp}-\delta_{\rm S})$ $S\sin(\delta_{\perp}-\delta_{\rm S})$ 9 $|A_{\rm S}A_0|$ $D\sin(\delta_0 - \delta_{\rm S})$ 10 $\frac{4}{2}\sqrt{3}\cos\theta_K\sin^2\theta_\mu$ $C\cos(\delta_0-\delta_{\rm S})$ $S\sin(\delta_0-\delta_{\rm S})$ $\cos(\delta_0 - \delta_S)$ $C \equiv \frac{1-|\lambda|^2}{1+|\lambda|^2}, \qquad S \equiv \frac{2\Im(\lambda)}{1+|\lambda|^2}, \qquad D \equiv -\frac{2\Re(\lambda)}{1+|\lambda|^2},$

 $\phi_s \equiv -\arg \lambda$

$B_s^0 \rightarrow \phi \phi$ differential decay rate

$$\frac{\mathrm{d}^4 \Gamma(t,\vec{\Omega})}{\mathrm{d}t \mathrm{d}\vec{\Omega}} \propto \sum_{k=1}^6 h_k(t) f_k(\vec{\Omega})$$

$$h_k(t) = N_k e^{-\Gamma_s t} \left[a_k \cosh\left(\frac{\Delta\Gamma_s}{2}t\right) + b_k \sinh\left(\frac{\Delta\Gamma_s}{2}t\right) + Qc_k \cos(\Delta m_s t) + Qd_k \sin(\Delta m_s t) \right]$$

i	N_i	a_i	b_i	C_i	d_i	f_i	
1	$ A_0 ^2$	$1+ \lambda_0 ^2$	$-2 \lambda_0 \cos(\phi)$	$1- \lambda_0 ^2$	$2 \lambda_0 \sin(\phi)$	$4\cos^2\theta_1\cos^2\theta_2$	
2	$ A_{\ } ^2$	$1+ \lambda_{\parallel} ^2$	$-2 \lambda_{\parallel} \cos(\phi_{s,\parallel})$	$1- \lambda_{\parallel} ^2$	$2 \lambda_{\parallel} \sin(\phi_{s,\parallel})$	$\sin^2\theta_1 \sin^2\theta_2 (1 + \cos 2\Phi)$	
3	$ A_{\perp} ^2$	$1+ \lambda_{\perp} ^2$	$2 \lambda_{\perp} \cos(\phi_{s,\perp})$	$1- \lambda_{\perp} ^2$	$-2 \lambda_{\parallel} \sin(\phi_{s,\perp})$	$\sin^2\theta_1 \sin^2\theta_2 (1 - \cos 2\Phi)$	
4	$ A_{\parallel} A_{\perp} $	$\sin(\delta_{\parallel} - \delta_{\perp}) - \lambda_{\parallel} \lambda_{\perp} \cdot$	$- \lambda_{\parallel} \sin(\delta_{\parallel}-\delta_{\perp}-\phi_{s,\parallel})$	$\sin(\delta_{\parallel} - \delta_{\perp}) + \lambda_{\parallel} \lambda_{\perp} \cdot$	$ \lambda_{\parallel} \cos(\delta_{\parallel}-\delta_{\perp}-\phi_{s,\parallel})$	$-2\sin^2\theta_{\rm c}\sin^2\theta_{\rm c}\sin^2\theta_{\rm c}$	
т	2	$\sin(\delta_{\parallel} - \delta_{\perp} - \phi_{s,\parallel} + \phi_{s,\perp})$	$+ \lambda_{\perp} \sin(\delta_{\parallel}-\delta_{\perp}+\phi_{s,\perp})$	$\sin(\delta_{\parallel} - \delta_{\perp} - \phi_{s,\parallel} + \phi_{s,\perp})$	$+ \lambda_{\perp} \cos(\delta_{\parallel}-\delta_{\perp}+\phi_{s,\perp})$		
5	$ A_{\parallel} A_{0} $	$\cos(\delta_{\parallel}-\delta_{0})+ \lambda_{\parallel} \lambda_{0} \cdot$	$- \lambda_{\parallel} \cos(\delta_{\parallel}-\delta_{0}-\phi_{s,\parallel})$	$\cos(\delta_{\parallel}-\delta_{0})- \lambda_{\parallel} \lambda_{0} \cdot$	$- \lambda_{\parallel} \sin(\delta_{\parallel}-\delta_{0}-\phi_{s,\parallel})$	$\sqrt{2}\sin 2\theta_{1}\sin 2\theta_{2}\cos \Phi$	
0	2	$\cos(\delta_{\parallel} - \delta_0 - \phi_{s,\parallel} + \phi)$	$+ \lambda_0 \cos(\delta_{\parallel}-\delta_0+\phi)$	$\sin(\delta_{\parallel} - \delta_0 - \phi_{s,\parallel} + \phi)$	$+ \lambda_0 \sin(\delta_{\parallel}-\delta_0+\phi)$	V 2 5111 201 5111 202 €05 ¥	
6	$ A_0 A_\perp $	$\sin(\delta_0 - \delta_\perp) - \lambda_0 \lambda_\perp \cdot$	$- \lambda_0 \sin(\delta_0-\delta_\perp-\phi)$	$\sin(\delta_0 - \delta_\perp) + \lambda_0 \lambda_\perp $	$ \lambda_0 \cos(\delta_0-\delta_\perp-\phi)$	$-\sqrt{2}\sin 2\theta_1\sin 2\theta_2\sin \Phi$	
	2	$\sin(\delta_0 - \delta_\perp - \phi + \phi_{s,\perp})$	$ + \lambda_{\perp} \sin(\delta_0 - \delta_{\perp} + \phi_{s,\perp}) $	$\sin(\delta_0 - \delta_\perp - \phi + \phi_{s,\perp})$	$ + \lambda_{\perp} \cos(\delta_0 - \delta_{\perp} + \phi_{s,\perp})$		

$$\Delta\Gamma_s$$
 with $B_s^0 \to J/\psi\eta'$ and $B_s^0 \to J/\psi\pi^+\pi^-$

$$\begin{split} R_i \propto & \frac{\left[e^{-\Gamma_S t(1+y)}\right]_{t_1}^{t_2}}{\left[e^{-\Gamma_S t(1-y)}\right]_{t_1}^{t_2}} \times \frac{(1-y)}{(1+y)} \text{, } y = \frac{\Delta\Gamma_S}{2\Gamma_S} \\ R_i &= A_i \frac{N_L^{RAW}}{N_H^{RAW}} \end{split}$$