TORCH: extending LHCb's particle ID capabilities in Upgrade II Michal Kreps on behalf of the TORCH project ICHEP 2024, 18-24 July 2024, Prague

Detector concept

- Large area time-of-flight detector designed to provide PID in the 2–15 GeV/c momentum range
- Aim to supplement PID performance in momentum region where *K*/*p* are below threshold in LHCb **RICH** detectors
- ➡ For separation over 10 m, aim for a resolution of 15 ps per track (requires 70 ps per photon)
- Developed for Upgrade II of LHCb (for installation) in LS4) to run at instantaneous luminosities of 1- $1.5 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$

Detector concept

- Exploit prompt production of Cherenkov light in an array of fused-silica bars to provide timing
- Cherenkov photons are propagated to detector plane via total internal reflection from the quartz surfaces
- Cylindrical focussing block, focusses the image onto a detector plane with highly segmented photon detectors Used to correct for chromatic dispersion
- Large area detector required to cover the full LHCb acceptance (5x6 m²) comprised of 18 modules $(2500 \times 66 \times 1 \text{ mm}^3)$

For more details on the TORCH concept see [<u>NIM A 639 (1) (2011) 173</u>]

Expected PID performance

 \rightarrow Provides π/K (p/K) separation in the 2–10 (2–15) GeV/c range:

power [LHCb-PUB-2020-006]

Improves phase space coverage of many analyses and effective flavour tagging

Fused-silica pieces

- Optics formed from multiple pieces of synthetic fused-silica
- Require high-quality surface on front and rear faces (flatness variation ≤3 µm and surface roughness 5Å)
- Two 66x62.5x1cm³ radiator plates acquired to complete a full-sized module

Produced by Nikon glass

Focussing

block

Fused-silica bar used as Cherenkov radiator

Measured flatness variation in 1 μm contours

Mechanical support

- Need lightweight structure to minimise material in front of other subdetectors
 Carbon fibre structure
- Prototype of the support structure is designed and being produced
- Plan to assemble full scale module for use in a beam test in 2025

Photon detectors

- Current TORCH prototype uses custom 53-by-53 mm² MCP-PMTs with 64-by-64 pads [JINST 10 (2015) <u>C05003</u>
- \therefore MCP-PMTs offer excellent intrinsic time resolution (< 30 ps) Pads are electronically ganged to form a 8-by-64 pixel
- arrangement
- Readout connectors are mounted on an external PCB and connected via anisotropic conductive film
 - Anode is capacitatively coupled
- \rightarrow MCP is ALD coated for a lifetime > 5 C/cm²

Photon detectors

- Existing devices are not suitable for the HL-LHC environment
- R&D effort to produce a 16-by-96 pixel MCP-PMT with direct coupling
 - Smaller pixels and reduced charge-sharing between pixels to reduce per-pixel occupancy

Work ongoing in context of DRD4 to improve rate capability and lifetime (ideally well beyond 10 C/cm²)

Assembled MCP-PMT before connector laser jet soldering

Detector performance

- Electronics based on NINO+HPTDC ASICs
 [JINST 11 (2016) 04 C04012]
- MCP-PMT and electronics performance studied extensively in laboratory measurements with pulsed 405 nm picosecond laser
 - Intrinsic time resolution of MCP-PMT and readout electronics (after INL correction) is around 50 ps
- Dedicated calibration system developed to improve time-walk and INL corrections for 2022 beam test
 - Injection of defined charges directly into electronics

Beam test setup

➡ 2 MCP-PMTs (1024) channels) in 2018 ➡ 6 MCP-PMTs (3076) channels) in 2022

Performance in 2018 beam test WARWICK

- Pattern consistent with Geant4 simulation of the prototype Time resolutions close to the needs of TORCH Expect improvement with better electronics calibration

Path number 10 hd Linear dependence expected from chromatic dispersion 40 160 80 100 120 140 Total number of reflections in plate Vertical Pixel [<u>NIMA 1050 (2023) 168181</u>]

Beam test with 6 MCP-PMTs

2022 beam test data analysis ongoing

Data taken at six and 10 GeV/c

Summary

- TORCH is a large-area time-of-flight detector designed to improve the particle identification capability of the LHCb experiment for particles with 2<p<15 GeV/c
- Significant progress in last few years
 - Beam tests indicate that desired time precision can be obtained
 - Light-weight support mechanics designed and under construction
 - Aim for beam test in 2025 with full scale prototype and new mechanics
- R&D ongoing as part of DRD4 to improve relevant aspects needed for TORCH
- New collaborators welcome

Electronics

- Existing electronics are based on NINO and HPTDC ASICs developed for the ALICE TPC [JINST 11 (2016) 04 C04012]
- Adaptors are being designed to read the DC-coupled MCP-PMT with existing electronics
- For upgrade II plan to use the FastRICH (with 25ps TDC binning) ASIC developed by CERN-ESE and University of Barcelona [https://fastrich.docs.cern.ch/]
 - Constant fraction discriminator reduces need to transmit time-overthreshold information, otherwise needed to correct time-walk

$$(1) + \frac{N_t}{N_{\text{tot}}} P_t(\vec{x}_i'' | h_t) + \frac{N_{\text{bkg}}}{N_{\text{tot}}} P_{\text{bkg}}(\vec{x}_i'')$$

Background contribution (assumed flat)

Physics case

TORCH can provide new opportunities with light nuclei

General purpose timing information to aid event reconstruction, e.g. reduce track ghost rates

Not only differences in time-of-flight but also in photon yield

Photon yield in 2018 beam test WARWI

- Reasonable agreement with Geant4 based simulation of prototype
- Photon yield in data about 82-85% of expectation
- Work ongoing with 2022
 beam test to further
 improve understanding

0.15

0.1

0.05

[<u>NIMA 1050 (2023) 168181</u>] scale • simulation • simulation **XX** 2 Arbitrary 🗕 data 0.15 0.10.05 2 scal • simulation • simulation Arbitrary 0.3 0.2 0.1 $N_{\rm photons}$ $N_{\rm photons}$

Time resolution in 2022 beam test

- Analysis of the 2022 data is ongoing
- Comparisons indicate a similar time resolution is seen in 2018 and 2022
- Data are corrected for integral non-linearities in the HPTDC and NINO time-walk using data-driven approaches

reltime {reltimes & the time of a Getant4

25

TORCH image

TORCH image forms bands in space/time:

 \rightarrow Use granularity of photon detector in y_{det} to account for chromatic dispersion

Support mechanics

Prototype for current test module with existing electronics

INL correction

- HPTDC time bins do not have all same width in time
 - Manifests as non-uniform distribution of signals
- Correct using uniform sample over all HPTDC time bins
- Relative difference from the uniform population in $DNL_i = \frac{N_i - P_{\exp}}{-1}$ each bin Pexp
- Change for each bin accumulates changes to previous bins $INL_i =$ DNL_i

