

The silicon tracking system of the future ALICE 3 experiment at the LHC

Igor Altsybeev on behalf of ALICE Collaboration

42^M INTERNATIONAL CONFERENCE ON HIGH ENERGY PHYSICS 18-24 July 2024

ALICE experiment: towards the Upgrade

ALICE is designed to study the quark-gluon plasma produced in heavy-ion collisions at the LHC

4 The ALICE experiment: A journey through QCD I for a standard of the stand

Two main physics cases driving the upgrade strategy:

- Heavy flavour (HF) transport and hadronization in the medium
- Electromagnetic radiation from the medium \rightarrow dileptons

 \rightarrow High-granularity, low-mass detector closer to IP, with continuous readout to access untriggerable signals with low S/B down to low p_T

The physics program has now been broadened with many other aspects of QCD, connections to astrophysics

ALICE 3 on the Upgrades timeline

ALICE 3 on the Upgrades timeline

ALICE 3: more precise and faster

ALICE 3: more precise and faster

Interaction rates:

	ALICE 2	ALICE 3
рр	1 MHz	24 MHz
Pb-Pb	50 kHz	100 kHz ^(*)

I. Altsybeev, ALICE 3 tracker, ICHEP 2024

^(*) limited by the LHC projections (not detector)

ALICE 3 detector layout

Forward Detectors

z≈17 m 4<|η|< 7

- Silicon Tracker (monolithic active pixels)
- PID systems: TOF, RICH, Muon ID, ECAL
- Forward scintillators
- Superconducting Solenoid 2T

ALICE 3 PID: G. Gioachin, Thu 17.36

ALICE 3 LOI

ALICE 3 large-acceptance Silicon Tracker

Layer	Material	Intrinsic	Barrel	layers	Forward d		
	thickness (%X ₀)	resolution (µm)	$\frac{\text{Length } (\pm z)}{(\text{cm})}$	Radius (r) (cm)	Position ($ z $) (cm)	R _{in} (cm)	R _{out} (cm)
0	0.1	2.5	50	0.50	26	0.50	3
1	0.1	2.5	50	1.20	30	0.50	3
2	0.1	2.5	50	2.50	34	0.50	3
3	1	10	124	3.75	77	5	35
4	1	10	124	7	100	5	35
5	1	10	124	12	122	5	35
6	1	10	124	20	150	5	80
7	1	10	124	30	180	5	80
8	1	10	264	45	220	5	80
9	1	10	264	60	279	5	80
10	1	10	264	80	340	5	80
11	1				400	5	80

Table 8: Geometry and key specifications of the tracker.

ALICE 3 large-acceptance Silicon Tracker

 Table 8: Geometry and key specifications of the tracker.

ALICE 3 Vertex Detector

Pointing resolution $\propto r_0 \cdot \sqrt{x/X_0}$ (multiple scattering regime)

- driven by radius and material of first layer
- minimal radius given by required aperture:

 $R \approx 5 \text{ mm}$ at top energy

 $R \approx 15 \text{ mm}$ at injection energy

\rightarrow need retractable vertex detector inside the beam pipe

ALICE 3 Vertex Detector

Pointing resolution $\propto r_0 \cdot \sqrt{x/X_0}$ (multiple scattering regime)

- driven by radius and material of first layer
- minimal radius given by required aperture:
 - $R \approx 5$ mm at top energy
 - $R \approx 15$ mm at injection energy

\rightarrow need retractable vertex detector inside the beam pipe

ALICE 3 Vertex Detector

Pointing resolution $\propto r_0 \cdot \sqrt{x/X_0}$ (multiple scattering regime)

- driven by radius and material of first layer
- minimal radius given by required aperture:

 $R \approx 5 \text{ mm}$ at top energy

 $R \approx 15$ mm at injection energy

\rightarrow need retractable vertex detector inside the beam pipe

Key detector characteristics

- 3 detection layers (barrel + disks)
- Retractable: $r_0 = 5 \text{ mm}$
- Material budget: 0.1% X0 / layer
- \bullet Unprecedented spatial resolution of $\textbf{2.5}\;\mu\textbf{m}$

ALICE 3 Vertex Detector – main R&D challenges

- Light-weight in-vacuum mechanics and cooling
 - impact of vacuum on components, wire bonding, glued parts
 - study of protection between primary and secondary vacuum
- Relying on ITS3 R&D for sensor design, stitching, wafer-scale bent sensor
- Radiation hardness* (10¹⁶ 1 MeV neq/cm² NIEL¹ + 300 Mrad TID²) * LOI values, further simulation studies ongoing
- Spatial resolution 2.5 μm (pixel pitch of 10 μm), sensors MAPS

3D printed Al-Be petals 0.5 mm* thick wall * goal is \approx 0.15 mm

¹ NIEL – non ionising energy loss
 ² TID – total ionising dose

Middle Layers and Outer Tracker

Relative p_{T} **resolution** \propto – (multiple scattering regime)

magnetic field and material budget are critical

 $B \cdot L$

Key detector characteristics:

- 8 barrel layers (3.5 cm < R < 80 cm)</p>
- 2 x 9 forward disks
- Total surface ~ 60 m²
- Material budget: 1% X₀ / layer
- Low power consumption: 20 mW/cm²
- Spatial resolution 10 μm (pixel pitch 50 μm)
- 100 ns time resolution (also for Vertex Detector)

Middle Layers and Outer Tracker

Relative p_{T} **resolution** \propto - (multiple scattering regime)

magnetic field and material budget are critical

Key detector characteristics:

- 8 barrel layers (3.5 cm < R < 80 cm)</p>
- 2 x 9 forward disks
- Total surface ~ 60 m²
- Material budget: 1% X₀ / layer
- Low power consumption: 20 mW/cm²
- Spatial resolution 10 μm (pixel pitch 50 μm)
- 100 ns time resolution (also for Vertex Detector)

Middle Layers:

- R&D: studying various options for ultra-light layers, leveraging on ITS3 technology
- benefits on tracking of soft electrons and of charged hyperons (Ξ⁻, Ω⁻)

ITS3 engineering model #2

I. Altsybeev, ALICE 3 tracker, ICHEP 2024

Outer Tracker – main R&D challenges

OT barrel design:

- 3+1 layers
- full-scale stave model
- air and water cooling studies
- mechanical support studies

Outer Tracker – main R&D challenges

OT barrel design:

- 3+1 layers
- full-scale stave model
- air and water cooling studies
- mechanical support studies

OT endcaps with disks:

- "paving" with modules
- mechanical layout (double-sided disks?), carbon-fibre support

Automated module assembly:

- general-purpose die-bonder machine
- flexible printed circuit, sensor gluing and interconnections
- large area → industrialized production

Simulations & tracking: momentum resolution

Solenoid 2T: p_T resolution for pions $\approx 0.7\%$ at $p_T \sim 1$ GeV/*c*

< 2% up to $|\eta| \approx 3$

Performance: "Strangeness tracking"

ALICE

Track particles before their (weak) decay in Vertex Detector + Middle Layers:

Performance: "Strangeness tracking"

Track particles before their (weak) decay in Vertex Detector + Middle Layers:

Multi-charm baryons at low $p_{\rm T}$

- unique probe of hadron formation
- recombination models predicts 2-3 orders of magnitude enhancement in Pb-Pb

Performance: Heavy-flavour angular correlations

- Directly probe heavy quark transport in QGP: sensitive to energy loss and thermalization degree
- Advantages from large η-coverage of ALICE 3

Performance: Hadronic interactions and exotic nuclei

- Two-particle D⁰-D^{*0} momentum correlations can be used to explore formation of D-D* bound states or T_{cc} particle
- Search for yet-undiscovered c-deuteron: reach significance of 50 for one month of Pb-Pb run

Performance: Chiral symmetry restoration with dielectrons

- Chiral symmetry breaking explains origin of 99% of visible mass in Universe
- Chiral symmetry is restored in quark-gluon plasma

Ultimate heavy-flavor background rejection, high statistics \rightarrow Access to ρ - a_1 mixing via m_{ee} excess spectrum

Must happen or main physics goals cannot be met 🛑 Important to meet several physics goals 😑 Desirable to enhance physics reach 🔵 R&D needs being met

Summary

- ALICE 3 will exploit the HL-LHC as a heavy-ion collider until Run 6
- Innovative (and challenging) silicon-based detector concept: ultra-light wide-acceptance tracker, continuous readout
- Enabling precision measurements of dileptons, (multi-)heavy-flavour hadrons and hadron correlations
- Pioneering several R&D directions with broad impact on future HEP experiments (e.g. FCC-ee)
- Scoping document is under preparation

Thank you for your attention!

Letter of Intent: arXiv:2211.02491

															ALICE 5			_ /	
2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	
LH	С		LHC			Lŀ	łC			LHC			L	IC		Lł	IC		HC
Run	2		LS2			Ru	n 3			LS3			Ru	n 4		L	S4	F	lun 5