



# Charmed hadron properties and spectroscopy at LHCb

Miroslav Saur (Peking University)

on behalf of the LHCb Collaboration

42<sup>nd</sup> International Conference on High Energy Physics (ICHEP2024) Prague, Czech Republic

2024/07/20





## LHCb experiment in Run 1 + Run 2



#### LHCb detector Run 1 + 2

- → General purpose detector in forward region with a special focus on heavy flavour physics
- → Successful operation in Run 1 (2010-2012) and 2 (2015-2018), upgraded for Run 3 (2022-2025)







#### Data collected by LHCb

- Successful operation in Run 1 and Run 2
- → Annual data-taking efficiency above 90 %
- → Various collision systems:
  - → pp, p-Pb, Pb-Pb, SMOG (fixed target-like)
- Recorded substantial amount of data
  - → Run 1: ~ 3 fb<sup>-1</sup>
  - → Run 2: ~ 6 fb<sup>-1</sup>
- Largest recorded sample of heavy flavour hadrons
- LHCb historically focused mostly on decays with charged hadrons or muons in the final state
  - Increasing amount of studies involving neutral particles such as  $\pi^{\circ}$  and  $\gamma$
  - Progress on electron PID and bremsstrahlung corrections allowing wider usage of electron modes
  - → Better understanding of relatively long-lived particles decaying outside of VELO (K<sup>0,</sup> Λ<sup>0</sup>, ...)





JHEP 05 074 (2017)

#### 2024/07/20





## Precise measurements of $\Omega_c^0$ baryon [PRL 132, 081802 (2024)]

2024/07/20

Charm hadrons properties and spectroscopy at LHCb

5



#### $\Omega_c^0$ measurement: analysis motivation

- →  $\Omega_c^0$  is the least probed singly charmed baryon
  - Not accessible on various charm-factories such as BESIII
- → No observation of singly Cabibbo-supressed (SCS) decays  $\Omega_c^0 \rightarrow \Xi^-\pi^+$  and  $\Omega_c^0 \rightarrow \Omega^-K^+$ 
  - First evidence of  $\Omega_c^0 \rightarrow \Xi^-\pi^+$  published by Belle [JHEP01(2023) 055]
  - Wide range of theoretical predictions for  $\Xi^-\pi^+$  (1.96×10<sup>-3</sup> ~1.04×10<sup>-1</sup>)
  - → No prediction available for  $\Omega^-K^+$
- $\rightarrow$  Aim of this analysis:
  - → Measure BFs of  $\Omega_c^0$  ->  $\Xi^-\pi^+$  and  $\Omega_c^0$  ->  $\Omega^-K^+$
  - → Precise measurement of  $\Omega_c^0$  mass using  $\Omega_c^0$  ->  $\Omega^-\pi^+$



W-exchange: nonfactorizable contribution



W-emission: factorizable contribution

Charm hadrons properties and spectroscopy at LHCb





- → Analysis based on 2016-2018 LHCb data (5.5 fb<sup>-1</sup>)
  - Full online reconstruction and selection of signal candidates
  - → LHCb Turbo model [Comput. Phys. Commun. 208 (2016) 35]
- → Challenging analysis due to presence of two long-lived particles
  - Most of the signal events decaying outside of VELO
  - Various possible combinations of Long and Downstream tracks
- → Analysis based on  $\Xi^-$  /  $\Omega^- \rightarrow \Lambda \pi^-/K^-$  in Down-Down-Long configuration







#### $\Omega_c^0$ measurement: analysis strategy

- → Relative branching fraction measurement using a proper normalization decay channel
- $\rightarrow$   $\Omega_c^0 \Omega^- \pi^+$  used as the normalization channel due to its relatively high yield and same topology
- $\rightarrow$  Relative branching fractions then can be calculated as:

$$R(\Omega_c^0 \to \Xi^- \pi^+) \equiv \frac{\mathcal{B}(\Xi^- \pi^+)}{\mathcal{B}(\Omega^- \pi^+)} = \frac{N(\Xi^- \pi^+)}{N(\Omega^- \pi^+)} \cdot \frac{\mathcal{B}(\Omega^- \to \Lambda K^-)}{\mathcal{B}(\Xi^- \to \Lambda \pi^-)} \cdot \frac{\varepsilon(\Omega^- \pi^+)}{\varepsilon(\Xi^- \pi^+)}$$
$$R(\Omega_c^0 \to \Omega^- K^+) \equiv \frac{\mathcal{B}(\Omega^- K^+)}{\mathcal{B}(\Omega^- \pi^+)} = \frac{N(\Omega^- K^+)}{N(\Omega^- \pi^+)} \cdot \frac{\varepsilon(\Omega^- \pi^+)}{\varepsilon(\Omega^- K^+)}$$

- → Where:
  - → *B:* branching fraction
  - N: Yield of the specific decay mode
  - $\bullet$  c: related total experimental efficiency



#### $\Omega_c^0$ measurement: invariant mass fit

- → Extended unbinned maximum likelihood fits are performed to full dataset
- Signal is based on Johnson SU + Gaussian distribution, the tail and fraction of Johnson are fixed from simulation
- → Background is modeled by an Exponential



Charm hadrons properties and spectroscopy at LHCb



#### $\Omega_c^0$ measurement: results

- → The first observation of singly Cabbibo-suppressed decays of  $\Omega_c^0 \Xi^- \pi^+$  and  $\Omega_c^0 \Omega^- K^+$
- → Ratio of Branching fraction obtained:

$$\frac{\mathcal{B}(\Omega_c^0 \to \Omega^- K^+)}{\mathcal{B}(\Omega_c^0 \to \Omega^- \pi^+)} = [6.08 \pm 0.51 \,(\text{stat}) \pm 0.40 \,(\text{syst})]\%, 
\frac{\mathcal{B}(\Omega_c^0 \to \Xi^- \pi^+)}{\mathcal{B}(\Omega_c^0 \to \Omega^- \pi^+)} = [15.81 \pm 0.87 \,(\text{stat}) \pm 0.44 \,(\text{syst}) \pm 0.16 \,(\text{ext})]\%$$

- → Results showing some tension with the theory predictions:
  - →  $\Omega_c^0 \rightarrow \Omega^- K^+ / \Omega_c^0 \rightarrow \Xi^- \pi^+$  is larger than 10.38 % predicted by algebra with factorizable and nonfactorizable amplitudes [Phys. Rev. D 101, 094033 (2020)]
  - Light-front quark model using only the external W-emission then predicts value of 3.45 % [Eur. Phys. J. C 80, 1066 (2020), Chin. Phys. C 42, 093101 (2018)]
- $\rightarrow$   $\Omega_{c}^{0}$  mass is consistent with the PDG value and while the precision is improved by a factor 4:

$$M(\Omega_c^0) = 2695.28 \pm 0.07 \,(\text{stat}) \pm 0.27 \,(\text{syst}) \pm 0.30 \,(\text{ext}) \,\text{MeV}$$

→ Mass difference between  $\Omega_c^0$  and  $\Omega^-$  obtained as:

 $m(\Omega_c^0) - m(\Omega^-) = 1022.83 \pm 0.07 \,(\text{stat}) \pm 0.27 \,(\text{syst}) \,\text{MeV}/c^2$ 

Charm hadrons properties and spectroscopy at LHCb





#### Observation of new $\Omega_c^0$ states decaying to the $\Xi_c^+K^$ final state [PRL. 131 (2023) 131902]

2024/07/20

Charm hadrons properties and spectroscopy at LHCb

11





#### New excited $\Omega_c^0$ states: status in 2017

→ In 2017 LHCb studied  $\Xi_{c}^{+}K^{-}$  spectrum up to 3450 MeV using 3.3 fb<sup>-1</sup> of data [PRL 118 (2017) 182001]



- → Five new  $\Omega_c^0$  states observed:
  - →  $\Omega_{\rm c}(3000)^{\rm 0}, \Omega_{\rm c}(3050)^{\rm 0}, \Omega_{\rm c}(3066)^{\rm 0}, \Omega_{\rm c}(3090)^{\rm 0}, \Omega_{\rm c}(3119)^{\rm 0}$
  - → Hint on another broad structure around 3200 and 3300 MeV



### New excited $\Omega_c^0$ states: motivation and data

- New states can be described by heavy quark effective theory
- → However large difference in predictions for masses and quantum numbers diverges in different models
  - Lattice quantum chromodynamics predicts invariant-mass spectrum with D or F–wave excited states [PRL 119 042001]
  - Baryon-meson molecular (quasi-bound) states interpretation for  $\Omega_c(3050)^0$  and  $\Omega_c(3090)^0$  [PRD 97 (2018) 094035, EPJ. A54 (2018) 64, Few Body Syst. 61 (2020) 34]
  - Interpretation as pentaquark states [PRD96 (2017) 034012, CTP 73 (2021) 035201]
- → New study is based on a full LHCb data-set of 9 fb<sup>-1</sup>
- → Data are split into two samples
  - Previously analysed data from Run 1 and 2015 (3.3 fb<sup>-1</sup>)
  - → Newly added 2016-2018 data (5.7 fb<sup>-1</sup>)
  - + Higher instantaneous luminosity and improved trigger result into five times large data-set
  - Dedicated selection and BDT training per sample
- → BDT trained with a special focus not to favour any particular excited state
- →  $\Omega_c(X)^{\circ}$  candidates are described by S-wave relativistic Breit–Wigner functions convolved with a Gaussian resolution function

Charm hadrons properties and spectroscopy at LHCb



#### New excited $\Omega_c^0$ states: results

- → In total 7 states are reported, including two new states  $\Omega_c(3185)^\circ$  and  $\Omega_c(3327)^\circ$
- → Several checks performed to confirm the existence of new states:
  - Splitting data into subsamples based on data-taking conditions, charge combination ( $\Xi_c^+K^-$  or  $\Xi_c^-K^+$ ) and different kinematic regions of pT(K<sup>-</sup>) and pT( $\Xi_c^+$ )



Charm hadrons properties and spectroscopy at LHCb





# First determination of the spin-parities of the $\Xi_c(3055)^{+(0)}$ baryons [LHCb-PAPER-2024-018; to be submitted to PRL]

### New results

2024/07/20



### $\Xi_{c}(3055)^{+(0)}$ measurement: analysis motivation

- →  $\Xi_c(3055)^{+(0)}$  observed for the first time by Babar (Belle)
- → Excitation modes of  $\Xi_c(3055)^{+(0)}$  extensively studied in literature
  - Excitation can happen between heavy quark and diquark (λmode) or between two light quarks (ρ-mode)
- → Many proposed interpretations, including:
  - → D-wave excitation with the spin-parity ( $J^{P}$ ) assignments of 3/2<sup>+</sup>, 5/2<sup>+</sup> or 7/2<sup>+</sup> [PRD 78 (2008) 056005]
  - → Possible compatibility with the 2S excitation of the  $\Xi_c(3F)$  or  $\Xi_c(6F)$  states, with a possible  $J^P$  assignment of  $1/2^+$  or  $3/2^+$  [PRD 96 (2017) 114003]
  - → Hadron molecular states are also proposed, favouring a J<sup>P</sup> assignment of 1/2<sup>-</sup> or 3/2<sup>-</sup> [EPJC 79 (2019) 167]



**ICHEP 2024** 

→ Experimental determination of  $\Xi_c(3055)^{+(0)} J^P$  is an important information for charm baryon spectroscopy



#### $\Xi_c(3055)^{+(0)}$ measurement: data

- → Study of  $\Xi_c(3055)^{+(0)}$  based on 2016-2018 data (5.4 fb<sup>-1</sup>)
- →  $\Xi_c(3055)^{+(0)}$  studied in decay of  $\Xi_b^{0(-)}$ 
  - $\rightarrow \quad \Xi_{\rm b}{}^{0(-)} \rightarrow \ \Xi_{\rm c}{}^{**+(0)}\pi^{-}$
  - →  $\Xi_c^{\star\star+(0)} \rightarrow D^{+(0)}\Lambda^0$ ,  $D^{+(0)} \rightarrow K\pi\pi(K\pi)$ ,  $\Lambda^0 \rightarrow p\pi^-$
  - $\Lambda^0$  can be both Long-Long or Down-Down
- → The total  $\Xi_{b}^{0(-)}$  yields are 637 ± 31 (232 ± 19)



**ICHEP 2024** 





#### $\Xi_c(3055)^{+(0)}$ measurement: amplitude analysis

- Amplitude analysis using helicity formalism
- Resonances described by relativistic Breit-Wigner convoluted by Gaussian resolution fucntions
- Non-resonant component described by exponential functions
- → Free parameters:
  - →  $\Xi_c^{**+(0)}$  mass
  - → Ξ<sub>c</sub>\*\*<sup>+(0)</sup>width
  - $\rightarrow$   $\Xi_{c}^{**+(0)}$  helicity couplings
- → Best fit corresponds to  $J^P = 3/2^+$



#### Charm hadrons properties and spectroscopy at LHCb



#### $\Xi_{c}(3055)^{+(0)}$ measurement: amplitude analysis

- Amplitude analysis using helicity formalism
- Resonances described by relativistic Breit-Wigner convoluted by Gaussian resolution fucntions
- Non-resonant component described by exponential functions
- → Free parameters:
  - → Ξ<sub>c</sub>\*\*<sup>+(0)</sup> mass
  - →  $\Xi_c^{**+(0)}$  width
  - →  $\Xi_{c}^{**+(0)}$  helicity couplings
- → Best fit corresponds to  $J^{P} = 3/2^{+}$
- Other hypotheses rejected at level above 6σ

| $J^P_{\Xi_c(3055)^+}$ | $n_{\sigma}$ | $\alpha_{\Xi_b^0 \to \Xi_c(3055)^+ \pi^-}$ |
|-----------------------|--------------|--------------------------------------------|
| $1/2^{-}$             | $12.9\sigma$ | $-0.10 \pm 0.17$                           |
| $1/2^{+}$             | $11.0\sigma$ | $+0.31\pm0.13$                             |
| $3/2^{-}$             | $7.3\sigma$  | $+0.18\pm0.14$                             |
| $5/2^{-}$             | $6.5\sigma$  | $-0.12\pm0.14$                             |
| $5/2^{+}$             | $9.8\sigma$  | $+0.52\pm0.14$                             |
| $7/2^{-}$             | $10.7\sigma$ | $+0.41\pm0.16$                             |
| $7/2^{+}$             | $10.9\sigma$ | $+0.12 \pm 0.14$                           |



#### $\Xi_c(3055)^{+(0)}$ measurement: results

- → The spin-parity of the  $\Xi_c(3055)^{+(0)}$  determined to be  $3/2^+$
- → The masses and widths updated with a precision comparable to previous determinations
- → Up-down asymmetries of  $\Xi_{b}^{0(-)} \rightarrow \Xi_{c}(3055)^{+(0)}\pi^{-}$  decays measured
  - Consistent with a complete parity violation
  - The first measurement for the transition of the  $\Xi_b$  to  $\Xi_c$  baryon with a pseudoscalar meson
- → The first determination of the relative branching fraction  $\frac{\mathcal{B}_{\Xi_c(3080)^+}}{\mathcal{B}_{\Xi_c(3055)^+}}$

| Quantity                 | $\Xi_c(3055)^+$             | $\Xi_{c}(3055)^{0}$         |
|--------------------------|-----------------------------|-----------------------------|
| $m [\mathrm{MeV}\!/c^2]$ | $3054.52 \pm 0.36 \pm 0.17$ | $3061.00 \pm 0.80 \pm 0.23$ |
| $\Gamma[\mathrm{MeV}]$   | $8.01 \pm 0.76 \pm 0.34$    | $12.4 \pm 2.0 \pm 1.1$      |
| $\alpha$                 | $-0.92\pm~0.10~\pm0.05$     | $-0.92 \pm 0.16 \pm 0.22$   |
| $R_{\mathcal{B}}$        | $0.045 \pm 0.023 \pm 0.006$ | $0.14 \pm 0.06 \pm 0.04$    |



## Conclusion

2024/07/20



#### Conclusion and outlook

- → LHCb is highly active in Charm sector and leading many studies of charm baryons
  - One of the largest recorded charm samples with high purity and excellent PID information
  - Many still ongoing analyses using Run 1 and Run 2 data
- → LHCb Upgrade I successfully taking Run 3 data with
  - Around 3 fb<sup>-1</sup> of pp data recorded in 2024 (½ of full Run 2 statistics)
  - Run 3 performance talk by G. Tuci on 18/07/2024 (Operation and Performance, 09:24)
- → Upgraded hardware and fully software trigger significantly improving LHCb reach in charm sector



#### LHCb Integrated Recorded Luminosity in pp by years 2010-2024

2024/07/20

Charm hadrons properties and spectroscopy at LHCb



## Thank you for the attention



## Spare slides

2024/07/20







## Systematic uncertainties: branching fraction

- Tracking efficiency:
  - Evaluated centrally, assigned 0.8 % per track not-canceling in the ratio
- → Decay model:
  - The decay asymmetry of three processes could be non-trivial but not properly modeled in MC
  - Simultaneously reweighted the MC according to the sWeighted data in different angular distributions
- → PID efficiency:
  - Using central calibration samples, limited by the size and selection of calibration samples
- Reweight strategy:
  - Correction between MC and data based on the normalization channel instead of per-channel

| Source                              | $\mathcal{B}(\Xi^-\pi^+)/\mathcal{B}(\Omega^-\pi^+)$ | $\mathcal{B}(\Omega^- K^+)/\mathcal{B}(\Omega^- \pi^+)$ |
|-------------------------------------|------------------------------------------------------|---------------------------------------------------------|
| Tracking efficiency                 | 1.78                                                 | 1.78                                                    |
| PID efficiency                      | 0.62                                                 | 3.37                                                    |
| L0 trigger efficiency               | 0.69                                                 | 1.26                                                    |
| Fit model                           | 0.54                                                 | 0.16                                                    |
| Decay model                         | 1.32                                                 | 3.59                                                    |
| Lifetimes of $\Omega^-$ and $\Xi^-$ | 0.59                                                 |                                                         |
| Simulation statistics               | 0.08                                                 | 0.07                                                    |
| Reweight strategy                   | 0.52                                                 | 2.82                                                    |
| Signal resolution                   | 0.97                                                 | 2.35                                                    |
| Total                               | 2.76                                                 | 6.51                                                    |
| External input                      | 1.04                                                 |                                                         |



#### Systematic uncertainties: mass



- Momenta of charged tracks require calibration due to non-perfect alignment, uncertainty on B, ...
- Empirically, momentum of final-state particles can vary up to 0.03%
- Largest possible deviation takes as a systematic uncertainty
- Energy loss correction
  - Particles energy loss due to the interaction with detector materials
  - Scaling by a number of final-state particles (4 final-state particles)
- → Mass fit model:
  - Alternative model for signal (Johnson SU + CB) and background (Chebyshev polynomial)

| Source                      | $\delta M (\text{MeV}/c^2)$ |
|-----------------------------|-----------------------------|
| Energy loss correction      | 0.030                       |
| Momentum scale calibration  | 0.265                       |
| Mass fit model              | 0.009                       |
| Total                       | 0.267                       |
| $\Omega^-$ mass uncertainty | 0.290                       |
| $\Lambda$ mass uncertainty  | 0.006                       |
| External input masses       | 0.296                       |

2024/07/20

Charm hadrons properties and spectroscopy at LHCb



#### New observations



→ In total 7 states are reported, including two new states  $\Omega_c(3185)^0$  and  $\Omega_c(3327)^0$ 





#### $\Xi_{\rm c}(3055)^{+(0)}$ measurement: helicity angles

- $A \Xi_h \rightarrow \Xi_c \pi^ II \Xi_h \rightarrow \Xi_c \pi^-$ •  $\mathcal{E}_h \to \mathcal{E}_c^{**} \pi^-$
- $\mathcal{Z}_{c}^{**} \to D\Lambda$

•  $\Lambda \rightarrow p\pi^-$ 

$$A_{\lambda_{\Xi_b},\lambda_{\Xi_c},\lambda_{\pi}} = H_{\lambda_{\Xi_c}} \circ \delta_{\lambda_{\Xi_b},\lambda_{\Xi_c}}$$

 $A_{\lambda_{\Xi_{c}},\lambda_{D},\lambda_{\Lambda}}^{\Xi_{c}\to D\Lambda} = H_{\lambda_{\Lambda}}^{\Xi_{c}\to D\Lambda} d_{\lambda_{\Xi_{c}},\lambda_{\Lambda}}^{J_{\Xi_{c}}}(\boldsymbol{\theta})$ 

Floated for each resonance Strong decay, only phase term:  $n^{P_{\Xi_c}}(-1)^{J_{\Xi_c}+1/2}$ 

Fixed from input

 $A^{\Lambda \to p\pi^-}_{\lambda_{\Lambda},\lambda_{p},\lambda_{\pi}} = H^{\Lambda \to p\pi^-}_{\lambda_{p}} D^{j_{\Lambda}}_{\lambda_{\Lambda},\lambda_{p}}(\boldsymbol{\phi},\boldsymbol{\beta},0)$ 





#### $\Xi_{\rm c}(3055)^{+(0)}$ measurement: systematic unc.

| Source                 | $\sigma_m \left[ \text{MeV}/c^2 \right]$ | $\sigma_{\Gamma} [\mathrm{MeV}]$ | $\sigma_{lpha}$ | $\sigma_{R_{\mathcal{B}}}$ |
|------------------------|------------------------------------------|----------------------------------|-----------------|----------------------------|
| Mass input             | $\pm 0.05$                               | _                                | _               | _                          |
| Momentum scale         | $\pm 0.01$                               | —                                | _               | _                          |
| Detector resolution    | $\pm 0.00$                               | $\pm 0.07$                       | $\pm 0.00$      | $\pm 0.000$                |
| MC sample size         | $\pm 0.15$                               | $\pm 0.30$                       | $\pm 0.02$      | $\pm 0.002$                |
| Trigger efficiency     | $\pm 0.01$                               | $\pm 0.03$                       | $\pm 0.02$      | $\pm 0.000$                |
| $\Lambda$ categories   | $\pm 0.03$                               | $\pm 0.04$                       | $\pm 0.01$      | $\pm 0.002$                |
| $\Xi_b^0$ Mass fit     | $\pm 0.03$                               | $\pm 0.13$                       | $\pm 0.01$      | $\pm 0.001$                |
| Angular momentum       | $\pm 0.00$                               | $\pm 0.00$                       | $\pm 0.04$      | $\pm 0.002$                |
| $\Gamma_{\Xi_c(3080)}$ | $\pm 0.01$                               | $\pm 0.01$                       | $\pm 0.00$      | $\pm 0.003$                |
| $m_{\Xi_c(3080)}$      | $\pm 0.00$                               | $\pm 0.02$                       | $\pm 0.00$      | $\pm 0.000$                |
| Clone tracks           | $\pm 0.02$                               | $\pm 0.03$                       | $\pm 0.01$      | $\pm 0.003$                |
| Total                  | $\pm 0.17$                               | $\pm 0.34$                       | $\pm 0.05$      | $\pm 0.006$                |

#### Charm hadrons properties and spectroscopy at LHCb





#### Amplitude analysis of the $\Lambda_c^+ \rightarrow p K^- \pi^+$ decay and $\Lambda_c^+$ baryon polarization measurement in semileptonic beauty hadron decays [PRD 108 (2023) 012023]

2024/07/20

Charm hadrons properties and spectroscopy at LHCb

31



#### Amplitude analysis of $\Lambda_c^+ \rightarrow pK^-\pi^+$ : data

- Semileptonic (SL) decay can be studied to determine amplitude models for polarisation measurements
  - Large polarisation from parity-violating weak decay gives full sensitivity on decay amplitude
  - Cleaner samples with more regular detector efficiency
  - Preferable for amplitude fit with many free parameters
- → Study of  $\Lambda c$ + → pK<sup>-</sup> $\pi$ <sup>+</sup> polarisation in SL decays of b-hadrons
  - → Based on 2016 data (~ 1.7 fb<sup>-1</sup>)
  - Significant available statistics ~ 1.27 M signal event
  - Minimal combinatorial background,
  - Negligible physical contributions
  - Fit performed on subsample of 400 000 signal candidates
  - Already dominated by systematics uncertainties



2024/07/20



#### Amplitude analysis of $\Lambda_c{}^+ \to p K^- \pi^+$ : fit



- Contributions improving the fit quality are retained
- Alternative models with similar quality considered for systematic uncertainties
- Polarisation weakly dependent on specific amplitude model
- Main contributions:
  - → Δ++(1232), K\*(892), K<sub>0</sub>\*(1430)

| Resonance           | $J^P$     | $\mathrm{Mass}~(\mathrm{MeV})$ | Width (MeV) |
|---------------------|-----------|--------------------------------|-------------|
| $\Lambda(1405)$     | $1/2^{-}$ | 1405.1                         | 50.5        |
| A(1520)             | $3/2^{-}$ | 1515 - 1523                    | 10 - 20     |
| $\Lambda(1600)$     | $1/2^{+}$ | 1630                           | 250         |
| A(1670)             | $1/2^{-}$ | 1670                           | 30          |
| A(1690)             | $3/2^{-}$ | 1690                           | 70          |
| $\Lambda(2000)$     | $1/2^{-}$ | 1900 - 2100                    | 20 - 400    |
| $\Delta(1232)^{++}$ | $3/2^{+}$ | 1232                           | 117         |
| $\Delta(1600)^{++}$ | $3/2^{+}$ | 1640                           | 300         |
| $\Delta(1700)^{++}$ | $3/2^{-}$ | 1690                           | 380         |
| $K_0^*(700)$        | $0^{+}$   | 824                            | 478         |
| $K^{*}(892)$        | $1^{-}$   | 895.5                          | 47.3        |
| $K_0^*(1430)$       | $0^{+}$   | 1375                           | 190         |



2024/07/20

LHC



 $\rightarrow$ 

## Amplitude analysis of $\Lambda_c^+ \rightarrow pK^-\pi^+$ : polarisation

- Precision measurement of the  $\Lambda_{c^+}$  polarisation vector
  - Uncertainties in sub-% level
- → Large polarisation measured in both helicity frames (HF)
  - $\rightarrow$   $\Lambda_{c}^{+}$  laboratory HF: more transverse (Px) than longitudinal (Pz)
  - $\rightarrow$   $\Lambda_{c}^{+}$  HF from approximate rest frame of b-hadron: more longitudinal than transverse
- → Normal polarisation (Py) compatible with zero in both systems
  - Sensitive to time-reversal violation effects and final-state interactions

| Component                               | Value $(\%)$                                                       |
|-----------------------------------------|--------------------------------------------------------------------|
| $P_x (lab)$                             | $60.32 \pm 0.68 \pm 0.98 \pm 0.21$                                 |
| $P_y (lab)$<br>$P_z (lab)$              | $-0.41 \pm 0.61 \pm 0.16 \pm 0.07$ $-24.7 \pm 0.6 \pm 0.3 \pm 1.1$ |
| $\frac{P_x(\tilde{B})}{P_x(\tilde{B})}$ | $21.65 \pm 0.68 \pm 0.36 \pm 0.15$                                 |
| $P_y(\tilde{B})$                        | $1.08 \pm 0.61 \pm 0.09 \pm 0.08$                                  |
| $P_z \ (	ilde{B})$                      | $-66.5 \pm 0.6 \pm 1.1 \pm 0.1$                                    |

2024/07/20



## LHCb Upgrade 1 + Modern trigger at LHCb

2024/07/20



#### LHCb experiment in Run 3

- → LHCb conditions in Run 3: luminosity of  $2x10^{33}$  cm<sup>-2</sup>s<sup>-1</sup>,  $\sqrt{s}$  = 13.6 TeV, visible collisions per bunch  $\mu \sim 5$
- → New tracker detectors, upgraded electronics, fully software trigger, ...
- → <u>A new general-purpose forward-region detector at LHC</u>





#### **Trigger strategies**

Almost every pp collision is interesting for LHCb as is contains a heavy quark (b, c)

