

Charmed hadron properties and spectroscopy at LHCb

Miroslav Saur (Peking University)

on behalf of the LHCb Collaboration

42nd International Conference on High Energy Physics (ICHEP2024) Prague, Czech Republic

2024/07/20

LHCb experiment in Run $1 +$ Run 2

LHCb detector Run $1 + 2$

- → General purpose detector in forward region with a special focus on heavy flavour physics
- → Successful operation in Run 1 (2010-2012) and 2 (2015-2018), upgraded for Run 3 (2022-2025)

2024/07/20 Charm hadrons properties and spectroscopy at LHCb 3

Data collected by LHCb

- Successful operation in Run 1 and Run 2
- → Annual data-taking efficiency above 90 %
- → Various collision systems:
	- pp, p-Pb, Pb-Pb, SMOG (fixed target-like)
- \rightarrow Recorded substantial amount of data
	- \rightarrow Run 1: ~ 3 fb⁻¹
	- $Run 2^{\cdot} \sim 6$ fb⁻¹
- → Largest recorded sample of heavy flavour hadrons
- → LHCb historically focused mostly on decays with charged hadrons or muons in the final state
	- Increasing amount of studies involving neutral particles $\frac{3}{5}$ such as $\bar{\pi^{\circ}}$ and γ
	- [→] Progress on electron PID and bremsstrahlung corrections allowing wider usage of electron modes
	- [→] Better understanding of relatively long-lived particles decaving outside of VELO $(K^0, N^0, ...)$

JHEP 05 074 (2017)

Precise measurements of Ω_c^0 baryon [PRL 132, 081802 (2024)]

Ω_c ^o measurement: analysis motivation

- \rightarrow Ω_c^0 is the least probed singly charmed baryon
	- Not accessible on various charm-factories such as BESIII
- \rightarrow No observation of singly Cabibbo-supressed (SCS) decays $\Omega_c^0 \rightarrow \Xi \pi^+$ and $\Omega_c^0 \rightarrow \Omega^+ K^+$
	- \rightarrow First evidence of Ω_c^0 $\rightarrow \Xi \pi^+$ published by Belle [JHEP01(2023) 055]
	- \rightarrow Wide range of theoretical predictions for Ξ^{\dagger} π = (1.96×10⁻³ ~1.04×10⁻¹)
	- \rightarrow No prediction available for $\Omega^{\cdot} K^+$
- \rightarrow Aim of this analysis:
	- \rightarrow Measure BFs of $\Omega_c^0 \rightarrow \Xi \pi^+$ and $\Omega_c^0 \rightarrow \Omega^+ K^+$
	- \rightarrow Precise measurement of Ω_c^0 mass using $\Omega_c^0 \rightarrow \Omega^+ \pi^+$

W-exchange: nonfactorizable contribution

W-emission: factorizable contribution

2024/07/20 Charm hadrons properties and spectroscopy at LHCb 6

- \rightarrow Analysis based on 2016-2018 LHCb data (5.5 fb⁻¹)
	- Full online reconstruction and selection of signal candidates
	- [→] LHCb Turbo model [Comput. Phys. Commun. 208 (2016) 35]
- \rightarrow Challenging analysis due to presence of two long-lived particles
	- Most of the signal events decaying outside of VELO
	- [→] Various possible combinations of Long and Downstream tracks
- \rightarrow Analysis based on Ξ / Ω \rightarrow Λπ/K in Down-Down-Long configuration

Ω_c ^o measurement: analysis strategy

- → Relative branching fraction measurement using a proper normalization decay channel
- [→] Ω^c ⁰ **[→]** Ω-π⁺ used as the normalization channel due to its relatively high yield and same topology
- \rightarrow Relative branching fractions then can be calculated as:

$$
R(\Omega_c^0 \to \Xi^- \pi^+) \equiv \frac{\mathcal{B}(\Xi^- \pi^+)}{\mathcal{B}(\Omega^- \pi^+)} = \frac{N(\Xi^- \pi^+)}{N(\Omega^- \pi^+)} \cdot \frac{\mathcal{B}(\Omega^- \to \Lambda K^-)}{\mathcal{B}(\Xi^- \to \Lambda \pi^-)} \cdot \frac{\varepsilon(\Omega^- \pi^+)}{\varepsilon(\Xi^- \pi^+)} R(\Omega_c^0 \to \Omega^- K^+) \equiv \frac{\mathcal{B}(\Omega^- K^+)}{\mathcal{B}(\Omega^- \pi^+)} = \frac{N(\Omega^- K^+)}{N(\Omega^- \pi^+)} \cdot \frac{\varepsilon(\Omega^- \pi^+)}{\varepsilon(\Omega^- K^+)}
$$

- → Where:
	- [→] *B:* branching fraction
	- [→] N: Yield of the specific decay mode
	- [→] ϵ: related total experimental efficiency

Ω_c ^o measurement: invariant mass fit

- → Extended unbinned maximum likelihood fits are performed to full dataset
- → Signal is based on Johnson SU + Gaussian distribution, the tail and fraction of Johnson are fixed from simulation
- \rightarrow Background is modeled by an Exponential

2024/07/20 Charm hadrons properties and spectroscopy at LHCb 9

Ω_c ^o measurement: results

- \rightarrow The first observation of singly Cabbibo-suppressed decays of Ω_c^0 \rightarrow Ξ π⁺ and Ω_c^0 \rightarrow Ω K⁺
- → Ratio of Branching fraction obtained:

$$
\frac{\mathcal{B}(\Omega_c^0 \to \Omega^- K^+)}{\mathcal{B}(\Omega_c^0 \to \Omega^- \pi^+)} = [6.08 \pm 0.51 \, (\text{stat}) \pm 0.40 \, (\text{syst})] \%,\n\frac{\mathcal{B}(\Omega_c^0 \to \Xi^- \pi^+)}{\mathcal{B}(\Omega_c^0 \to \Omega^- \pi^+)} = [15.81 \pm 0.87 \, (\text{stat}) \pm 0.44 \, (\text{syst}) \pm 0.16 \, (\text{ext})] \%
$$

- → Results showing some tension with the theory predictions:
	- Ω_c^0 Ω K⁺ / Ω_c⁰ Ξ π⁺ is larger than 10.38 % predicted by algebra with factorizable and nonfactorizable amplitudes [Phys. Rev. D 101, 094033 (2020)]
	- [→] Light-front quark model using only the external W-emission then predicts value of 3.45 % [Eur. Phys. J. C 80, 1066 (2020), Chin. Phys. C 42, 093101 (2018)]
- \rightarrow Ω_c^0 mass is consistent with the PDG value and while the precision is improved by a factor 4:

$$
M(\varOmega_{c}^{0})\ \ =\ \ 2695.28 \pm 0.07\, (\mathrm{stat}) \pm 0.27\, (\mathrm{syst}) \pm 0.30\, (\mathrm{ext})\, \mathrm{MeV}
$$

 \rightarrow Mass difference between Ω_c^0 and Ω obtained as:

 $m(\Omega_c^0) - m(\Omega^-) = 1022.83 \pm 0.07$ (stat) ± 0.27 (syst) MeV/ c^2

2024/07/20 Charm hadrons properties and spectroscopy at LHCb 10

Observation of new Ω_c^0 states decaying to the Ξ_c ⁺K⁻ final state [PRL. 131 (2023) 131902]

New excited $Ω_c$ ⁰ states: status in 2017

→ In 2017 LHCb studied Ξ_c ⁺K⁻ spectrum up to 3450 MeV using 3.3 fb⁻¹ of data [PRL 118 (2017) 182001]

- \rightarrow Five new Ω_c^0 states observed:
	- $\Omega_{\rm c}$ (3000)^o, Ω_c(3050)^o, Ω_c(3066)^o, Ω_c(3090)^o, Ω_c(3119)^o
	- [→] Hint on another broad structure around 3200 and 3300 MeV

New excited $Ω_c°$ states: motivation and data

- \rightarrow New states can be described by heavy quark effective theory
- → However large difference in predictions for masses and quantum numbers diverges in different models
	- Lattice quantum chromodynamics predicts invariant-mass spectrum with D or F–wave excited states [PRL 119 042001]
	- \rightarrow Baryon-meson molecular (quasi-bound) states interpretation for $\Omega_c(3050)^0$ and $\Omega_c(3090)^0$ [PRD 97 (2018) 094035 , EPJ. A54 (2018) 64, Few Body Syst. 61 (2020) 34]
	- [→] Interpretation as pentaquark states [PRD96 (2017) 034012, CTP 73 (2021) 035201]
- \rightarrow New study is based on a full LHCb data-set of 9 fb⁻¹
- \rightarrow Data are split into two samples
	- \rightarrow Previously analysed data from Run 1 and 2015 (3.3 fb⁻¹)
	- \rightarrow Newly added 2016-2018 data (5.7 fb⁻¹)
	- [→] Higher instantaneous luminosity and improved trigger result into five times large data-set
	- [→] Dedicated selection and BDT training per sample
- \rightarrow BDT trained with a special focus not to favour any particular excited state
- \rightarrow $\Omega_c(X)^0$ candidates are described by S-wave relativistic Breit–Wigner functions convolved with a Gaussian resolution function

2024/07/20 Charm hadrons properties and spectroscopy at LHCb 13

New excited $Ω_c$ ⁰ states: results

- \rightarrow In total 7 states are reported, including two new states $\Omega_c(3185)^0$ and $\Omega_c(3327)^0$
- → Several checks performed to confirm the existence of new states:
	- \rightarrow Splitting data into subsamples based on data-taking conditions, charge combination (Ξ_c +K- or Ξ_c K+) and different kinematic regions of $pT(K)$ and $pT(\Xi_c^+)$

2024/07/20 Charm hadrons properties and spectroscopy at LHCb 14

First determination of the spin-parities of the $\Xi_c(3055)^{+(0)}$ baryons [LHCb-PAPER-2024-018; to be submitted to PRL]

New results

$\Xi_c(3055)^{+(0)}$ measurement: analysis motivation

- \rightarrow \equiv _c(3055)⁺⁽⁰⁾ observed for the first time by Babar (Belle)
- \rightarrow Excitation modes of $\Xi_c(3055)^{+(0)}$ extensively studied in literature
	- \rightarrow Excitation can happen between heavy quark and diquark (λ mode) or between two light quarks (ρ-mode)
- → Many proposed interpretations, including:
	- \rightarrow D-wave excitation with the spin-parity (J^P) assignments of 3/2⁺, 5/2⁺ or 7/2⁺ [PRD 78 (2008) 056005]
	- \rightarrow Possible compatibility with the 2S excitation of the $\Xi_c(3F)$ or Ξ_c (6F) states, with a possible J^P assignment of 1/2⁺ or 3/2⁺ [PRD 96 (2017) 114003]
	- [→] Hadron molecular states are also proposed, favouring a *J P* assignment of 1/2[−] or 3/2[−] [EPJC 79 (2019) 167]

ICHEP 2024

 \rightarrow Experimental determination of $\Xi_c(3055)^{+(0)} J^P$ is an important information for charm baryon spectroscopy

$\Xi_c(3055)^{+(0)}$ measurement: data

- \rightarrow Study of $\Xi_c(3055)^{+(0)}$ based on 2016-2018 data (5.4 fb⁻¹)
- \rightarrow $\Xi_c(3055)^{+(0)}$ studied in decay of $\Xi_b^{0(0)}$
	- \rightarrow $\Xi_b{}^{0(-)}$ \rightarrow $\Xi_c{}^{***(0)}\pi^-$
	- \rightarrow Ξ_c **⁺⁽⁰⁾ → D⁺⁽⁰⁾ Λ ⁰, D⁺⁽⁰⁾ → K $\pi\pi$ (K π), Λ ⁰ → p π ⁻
	- $Λ⁰$ can be both Long-Long or Down-Down
- \rightarrow The total $\Xi_b{}^{0(\cdot)}$ yields are 637 ± 31 (232 ± 19)

ICHEP 2024

$\Xi_c(3055)^{+(0)}$ measurement: amplitude analysis

- \rightarrow Amplitude analysis using helicity formalism
- \rightarrow Resonances described by relativistic Breit-Wigner convoluted by Gaussian resolution fucntions
- → Non-resonant component described by exponential functions
- → Free parameters:
	- \rightarrow \equiv_c **⁺⁽⁰⁾ mass
	- $\rightarrow \quad \Xi_c^{***(0)}$ width
	- \rightarrow \equiv _c**⁺⁽⁰⁾ helicity couplings
- \rightarrow Best fit corresponds to $J^P = 3/2^+$

2024/07/20 Charm hadrons properties and spectroscopy at LHCb 18

Ξ_c (3055)⁺⁽⁰⁾ measurement: amplitude analysis

- \rightarrow Amplitude analysis using helicity formalism
- \rightarrow Resonances described by relativistic Breit-Wigner convoluted by Gaussian resolution fucntions
- → Non-resonant component described by exponential functions
- → Free parameters:
	- \rightarrow \equiv_c **⁺⁽⁰⁾ mass
	- $\rightarrow \quad \Xi_c^{***(0)}$ width
	- \rightarrow \equiv _c**⁺⁽⁰⁾ helicity couplings
- \rightarrow Best fit corresponds to $J^P = 3/2^+$
- → Other hypotheses rejected at level above 6σ

$\Xi_c(3055)^{+(0)}$ measurement: results

- \rightarrow The spin-parity of the $\Xi_c(3055)^{+(0)}$ determined to be 3/2⁺
- \rightarrow The masses and widths updated with a precision comparable to previous determinations
- \rightarrow Up-down asymmetries of $\Xi_b{}^{0(-)} \rightarrow \Xi_c(3055)^{+0.0} \pi^-$ decays measured
	- [→] Consistent with a complete parity violation
	- \rightarrow The first measurement for the transition of the Ξ_b to Ξ_c baryon with a pseudoscalar meson
- \rightarrow The first determination of the relative branching fraction $\frac{\mathcal{B}_{E_c(3080)^+}}{\mathcal{B}_{E_c(3055)^+}}$

Conclusion

Conclusion and outlook

- → LHCb is highly active in Charm sector and leading many studies of charm baryons
	- [→] One of the largest recorded charm samples with high purity and excellent PID information
	- [→] Many still ongoing analyses using Run 1 and Run 2 data
- → LHCb Upgrade I successfully taking Run 3 data with
	- [→] Around 3 fb-1 of pp data recorded in 2024 (½ of full Run 2 statistics)
	- [→] Run 3 performance talk by G. Tuci on 18/07/2024 (Operation and Performance, 09:24)
- → Upgraded hardware and fully software trigger significantly improving LHCb reach in charm sector

LHCb Integrated Recorded Luminosity in pp by years 2010-2024

2024/07/20 Charm hadrons properties and spectroscopy at LHCb 22

Thank you for the attention

Spare slides

Systematic uncertainties: branching fraction

- \rightarrow Tracking efficiency:
	- [→] Evaluated centrally, assigned 0.8 % per track not-canceling in the ratio
- → Decay model:
	- [→] The decay asymmetry of three processes could be non-trivial but not properly modeled in MC
	- [→] Simultaneously reweighted the MC according to the sWeighted data in different angular distributions
- → PID efficiency:
	- [→] Using central calibration samples, limited by the size and selection of calibration samples
- → Reweight strategy:
	- [→] Correction between MC and data based on the normalization channel instead of per-channel

Systematic uncertainties: mass

- → Momentum scale calibration
	- [→] Momenta of charged tracks require calibration due to non-perfect alignment, uncertainty on B, …
	- [→] Empirically, momentum of final-state particles can vary up to 0.03%
	- [→] Largest possible deviation takes as a systematic uncertainty
- → Energy loss correction
	- [→] Particles energy loss due to the interaction with detector materials
	- [→] Scaling by a number of final-state particles (4 final-state particles)
- → Mass fit model:
	- [→] Alternative model for signal (Johnson SU + CB) and background (Chebyshev polynomial)

2024/07/20 Charm hadrons properties and spectroscopy at LHCb 27

New observations

 \rightarrow In total 7 states are reported, including two new states $\Omega_c(3185)^0$ and $\Omega_c(3327)^0$

$\Xi_c(3055)^{+(0)}$ measurement: helicity angles

- $E_b \rightarrow E_c^{**} \pi^-$
- $E_c^{**} \rightarrow DA$

$$
A_{\lambda_{\Xi_b},\lambda_{\Xi_c},\lambda_{\pi}}^{\Delta_b \to \Delta_c n} = H_{\lambda_{\Xi_c}}^{\Delta_b \to \Delta_c n} \delta_{\lambda_{\Xi_b},\lambda_{\Xi_c}}
$$

 $A_{\lambda_{\Xi c},\lambda_{D},\lambda_{\Lambda}}^{\Xi_{c}\to D\Lambda}=H_{\lambda_{\Lambda}}^{\Xi_{c}\to D\Lambda}d_{\lambda_{\Xi c},\lambda_{\Lambda}}^{J_{\Xi c}}(\theta)$

• $\Lambda \rightarrow p \pi^-$

$$
A_{\lambda_{\Lambda},\lambda_{p},\lambda_{\pi}}^{\Lambda \rightarrow p \pi^{-}} = H_{\lambda_{p}}^{\Lambda \rightarrow p \pi^{-}} D_{\lambda_{\Lambda},\lambda_{p}}^{j_{\Lambda}}(\phi,\beta,0)
$$

Floated for each resonance Strong decay, only phase term: $\eta^{P_{\Xi_c}}(-1)^{J_{\Xi_c}+1/2}$

Fixed from input

$\Xi_c(3055)^{+(0)}$ measurement: systematic unc.

2024/07/20 Charm hadrons properties and spectroscopy at LHCb 30

Amplitude analysis of the $\Lambda_c^+ \rightarrow pK^-\pi^+$ decay and Λ_c^+ baryon polarization measurement in semileptonic beauty hadron decays [PRD 108 (2023) 012023]

- → Semileptonic (SL) decay can be studied to determine amplitude models for polarisation measurements
	- Large polarisation from parity-violating weak decay gives full sensitivity on decay amplitude
	- Cleaner samples with more regular detector efficiency
	- Preferable for amplitude fit with many free parameters
- → Study of Λc+ → pK−π⁺ polarisation in SL decays of b-hadrons
	- Based on 2016 data (\sim 1.7 fb⁻¹)
	- Significant available statistics \sim 1.27 M signal event
	- [→] Minimal combinatorial background,
	- [→] Negligible physical contributions
	- Fit performed on subsample of 400 000 signal candidates
	- Already dominated by systematics uncertainties

Amplitude analysis of $\Lambda_c^+ \rightarrow pK^-\pi^+$: fit

→ Amplitude model built from contributions $\times 10^3$ $\times 10^3$ $\times 10^3$ visible in the Dalitz plot and PDG VISIble in the Dalitz plot and PDG

resonances

→ Contributions improving the fit quality are

retained

→ Alternative models with similar quality Candidates/ (0.018 GeV^2) Candidates/ (0.025 GeV^2) -10 I resonances 5Ė retained \rightarrow Alternative models with similar quality considered for systematic uncertainties 3.5 $\overline{4}$ $0.4\; 0.6\; 0.8$ 1 1.2 1.4 1.6 1.8 2 2.5 $\overline{\mathbf{3}}$ 4.5 → Polarisation weakly dependent on $m^2(pK^-)[{\rm GeV}^2]$ $m^2(K^-\pi^+)[{\rm GeV}^2]$ specific amplitude model $\times 10^3$ $\times 10^{-7}$ Candidates/0.02 Candidates/0.063 Candidates/0.063 → Main contributions: $\rightarrow \Delta$ ++(1232), K^{*}(892), K₀^{*}(1430) J^P $Mass (MeV)$ Width (MeV) Resonance

2024/07/20 Charm hadrons properties and spectroscopy at LHCb 33

 χ

Amplitude analysis of $\Lambda_{c}^{+} \rightarrow pK^{-}\pi^{+}$: polarisation

- \rightarrow Precision measurement of the Λ_c^+ polarisation vector
	- [→] Uncertainties in sub-% level
- \rightarrow Large polarisation measured in both helicity frames (HF)
	- \rightarrow Λ_c^+ laboratory HF: more transverse (Px) than longitudinal (Pz)
	- \rightarrow Λ_c ⁺ HF from approximate rest frame of b-hadron: more longitudinal than transverse
- \rightarrow Normal polarisation (Py) compatible with zero in both systems
	- [→] Sensitive to time-reversal violation effects and final-state interactions

LHCb Upgrade 1 + Modern trigger at LHCb

LHCb experiment in Run 3

- \rightarrow LHCb conditions in Run 3: luminosity of 2x10³³ cm⁻²s⁻¹, \sqrt{s} = 13.6 TeV, visible collisions per bunch $\mu \sim 5$
- → New tracker detectors, upgraded electronics, fully software trigger, ...
- → A new general-purpose forward-region detector at LHC

Trigger strategies

[→] Almost every pp collision is interesting for LHCb as is contains a heavy quark (*b*, *c*)

