42nd International Conference on High Energy Physics Prague, 18-24 July 2024

Mixing and time-dependent *CP* violation in Charm decays at LHCb

Roberto Ribatti (EPFL)

roberto.ribatti@cern.ch

on behalf of the LHCb collaboration

What's charming in Charm physics?

Charmed neutral meson is the only one made of up-type quark.
 Mixing & CPV extremely suppressed in SM

 \rightarrow powerful probe for new interactions at energy scales \gg colliders

• In 2019 LHCb reported first observation of CPV in charm decay,

 $\Delta A_{CP} = A_{CP}(K^+K^-) - A_{CP}(\pi^+\pi^-) \neq 0, \text{ PRL122,211803}$

followed in 2023 by first evidence of CPV in a single decay channel PRL131.091802

• Need further measurement to clarify theoretical interpretation, SM or NP?

Mixing and CPV in Charm

Grossman & al. 2009 Kagan & Sokoloff 2009 Kagan & Silvestrini 2021

Flavoured neutral meson evolution effectively described by

$$i\frac{\partial}{\partial t}\begin{pmatrix} M^{0}(t)\\\overline{M}^{0}(t)\end{pmatrix} = \begin{bmatrix} \begin{pmatrix} M & M_{12}\\M_{12}^{*} & M \end{pmatrix} - \frac{i}{2}\begin{pmatrix} \Gamma & \Gamma_{12}\\\Gamma_{12}^{*} & \Gamma \end{pmatrix} \end{bmatrix} \begin{pmatrix} M^{0}(t)\\\overline{M}^{0}(t)\end{pmatrix}$$

NP \to off-shell transitions on-shell transitions

• Oscillations are governed by two mixing parameters:

$$x_{12} \equiv \frac{2|M_{12}|}{\Gamma} \simeq \frac{\Delta m}{\Gamma}, \qquad y_{12} \equiv \frac{|\Gamma_{12}|}{\Gamma} \simeq \frac{\Delta \Gamma}{\Gamma}$$

 \rightarrow Moving from first observation (2009) to precision measurements

• CPV in mixing is regulated by absorptive and dispersive mixing phase: $\phi_2^M \sim \arg(M_{12}), \qquad \phi_2^\Gamma \sim \arg(\Gamma_{12})$

\rightarrow Still no evidence of CPV in mixing

current experimental precision \sim 20 mrad vs. SM prediction O(2 mrad)

Recent LHCb measurements

• Measurement of mixing and CPV in $D^0 \rightarrow K^+\pi^-$ decay with Run 2 LHCb dataset LHCb-PAPER-2024-008

• Measurement of time-dependent CPV in $D^0 \rightarrow \pi^+\pi^-\pi^0$ decays with Run 1+2 LHCb dataset arXiv:2405.06556

Mixing and *CPV* in $D^0 \rightarrow K^+\pi^-$

$D^0 \rightarrow K^+ \pi^-$ WS decay channel

- Neutral *D* meson flavour tagged exploiting strong decay $D^{*+} \rightarrow D^0 \pi_s^+$ and $D^{*-} \rightarrow \overline{D}^0 \pi_s^-$
- Final state of interest: Wrong sign (WS)

slow pions

Normalization channels: Right sign (RS) and $KK \leftarrow$ used to cancel instrumental efficiency/asymmetry

Measure the time dependence of the yield ratio $R^{\pm}_{\nu_{\pi}}(t)$

$$\tilde{R}_{K\pi}^{+}(t) \equiv \frac{\Gamma(D^{0}(t) \to K^{+}\pi^{-})}{\Gamma(\overline{D}^{0}(t) \to K^{+}\pi^{-})} \frac{\Gamma(\overline{D}^{0}(t) \to K^{+}K^{-})}{\Gamma(D^{0}(t) \to K^{+}K^{-})} \text{ and } \tilde{R}_{K\pi}^{-}(t) \equiv \frac{\Gamma(\overline{D}^{0}(t) \to K^{-}\pi^{+})}{\Gamma(D^{0}(t) \to K^{-}\pi^{+})} \frac{\Gamma(D^{0}(t) \to K^{+}K^{-})}{\Gamma(\overline{D}^{0}(t) \to K^{+}K^{-})}$$

ICHEP, July 20th 2024

0

Roberto Ribatti | Mixing and time-dependent CPV in Charm decays at LHCb

Ratio decay-time dependency

 $t := D^0$ decay time in unit of D^0 lifetime

low sensitivity to quadratic term

$$\frac{\tilde{R}_{K\pi}^{+}(t) + \tilde{R}_{K\pi}^{-}(t)}{2} \approx R_{K\pi} \left(1 + \frac{c_{K\pi}}{\sqrt{R_{K\pi}}} t + \frac{c_{K\pi}'}{R_{K\pi}} t^2 \right),$$

$$\frac{\tilde{R}_{K\pi}^{+}(t) - \tilde{R}_{K\pi}^{-}(t)}{2} \approx R_{K\pi} \left(\tilde{A}_{K\pi} + \frac{\Delta \tilde{c}_{K\pi}}{\sqrt{R_{K\pi}}} t + \frac{\Delta \tilde{c}_{K\pi}'}{R_{K\pi}} t^2 \right),$$

0

• $R_{K\pi}$ is the DCS/CF ratio ~3.4 x 10⁻³

• Mixing observables:

 $\circ \quad c_{K\pi} \approx y_{12} + x_{12} \,\Delta_{K\pi}$

mostly sensitive to y_{12} strong phase $\Delta_{K\pi} = -10$ LHCb-CONF-20

$$c'_{{}_{\!\!K\pi}}\approx \frac{x_{12}^2+y_{12}^2}{4}$$

strong phase difference $\Delta_{K\pi} = -10^{\circ} \pm 3^{\circ}$ LHCb-CONF-2022-003, PRD86.112001, EPJC82.1009 CPV observables:

 $ilde{A}_{K\pi}pprox a^d_{
m DCS} - 2a^d_{KK}$ sn

SM predict
$$a^d_{DCS} = 0$$

only one amplitude in $D^0 \rightarrow K\pi$

$$\Delta \tilde{c}_{K\pi} \approx \phi_2^M x_{12} \left(1 + 2\sqrt{R_{K\pi}} \right) - \phi_2^{\Gamma} y_{12} \Delta_{K\pi}$$

mostly sensitive to $\phi_2^M x_{12} \approx -\Delta Y$

$$\Delta \tilde{c}'_{\kappa\pi} \approx \left[\phi_2^M \left(1 + 4\sqrt{R_{\kappa\pi}}\right) - \phi_2^{\Gamma}\right] \frac{x_{12} y_{12}}{2}$$

Dataset

- Dataset: Run 2, 6 fb⁻¹ pp collision @ 13 TeV
- Sample divided depending on:
 D⁰ final states, t and data-taking period
- Binned fit performed simultaneously to $D^0\pi^+$ invariant mass distributions of WS and RS to disentangle signal from main backgrounds
- Similar fit performed simultaneously to $D^0 \rightarrow K^+ K^-$ samples from D^{*+} and D^{*-}

Roberto Ribatti | Mixing and time-dependent CPV in Charm decays at LHCb

Experimental challenges

- Misassociation of correct VELO hits with wrong T-Stations hits turn RS π_s in WS ghosts π_s that peak in D^* mass \rightarrow Pure ghost subsample used as proxy for bkg shape
- t biased towards higher values due to secondary D^{*} from
 b-hadrons decays
 Decide to be presented as a secondary D^{*} from
 - \rightarrow Reject bkg cutting on IP(D^0). Residual time biases determined via 2D template fit to t vs. IP(D^0)
- $D^0 \rightarrow K^+ K^-$ kinematics is equalized to $D^0 \rightarrow K^- \pi^+$ to exactly cancel instrumental asymmetries

Mixing + *CPV* fit – Results

Mixing observables $c'_{\kappa_{\pi}} \neq 0, 3.5\sigma$ evidence for a significant quadratic term

All parameters are statistically dominated Uncertainty improved by 1.6x wrt PRD97,031101

ICHEP, July 20th 2024

Roberto Ribatti | Mixing and time-dependent CPV in Charm decays at LHCb

Impact on World Average – $a_{DCS}^d = 0$

New charm+beauty LHCb fit \rightarrow Aidan talk @ 17.30

• Assuming $a_{DCS}^d = 0$ boosts ϕ_2^M sensitivity and allows to perform an independent measurement of a_{KK}^d

Time-dependent *CPV* in $D^0 \rightarrow \pi^+\pi^-\pi^0$

Observable and dataset

- Time dependent CP asymmetry can be expanded as $A^{f}_{CP}(t) \equiv \frac{\Gamma\left(D^{0}(t) \to f\right) - \Gamma\left(\overline{D}^{0}(t) \to f\right)}{\Gamma\left(D^{0}(t) \to f\right) + \Gamma\left(\overline{D}^{0}(t) \to f\right)} \approx a^{d}_{f} + \Delta Y_{f} t$
- In $D^0 \rightarrow \pi^+ \pi^- \pi^0$ (self-conjugated multibody decay):

PRD91,094032 $\Delta Y_f \approx \phi_2^M x_{12} \left(1 - 2F_f^+\right)$ CP-even fraction

PLB747,9
$$F^+_{\pi\pi\pi^0}=0.973\pm 0.017$$
 ~ entirely CP-even

- Dataset: 2012 + Run 2, 7.7 fb⁻¹, D^* tagged
- Sample divided depending on t, data-taking period, magnet polarity and $\pi^0 \rightarrow \gamma \gamma$ decay category
- Trigger induced time-dependent asymmetries removed equalizing D^0 , π_s kinematics among D^{*+} and D^{*-}

Final results

- Consistent with no CP violation and statistically limited
- First measurement of time-dependent CPV in a decay with π^0 @ hadron collider

Conclusions

- Main advancement in charm CPV
 - CPV mixing phase ϕ_2^M uncertainties down to 13 mrad \rightarrow compatible with zero, 6x SM prediction
 - new independent measurement of a_{KK}^d ullet \rightarrow enhanced evidence of direct CPV in $D^0 \rightarrow \pi^+\pi^-$
- Very successful Run 2. Measurements still statistically dominated
- The way is paved for Run 3. Expected 2x efficiency / fb⁻¹ for $D^0 \rightarrow hh^2$
- Still more to come from Run 1+2, stay tuned !

0.4

0.6

 $x_{12}^{0.8}$

[%]

0.9

0.5

0.4

urs hold 68%, 95% CL

0.2

Thank you!

Phenomenological vs Theoretical parametrization

 $|D_{1,2}\rangle = p|D^0\rangle \pm q|\bar{D}^0\rangle$

Phenomenological Theoretical

 $x = \Delta m / \Gamma$ $x_{12} = 2|M_{12}| / \Gamma$ $x_{12} \approx |x|$

 $y = \Delta \Gamma / 2\Gamma \qquad \qquad y_{12} = |\Gamma_{12}| / \Gamma$

 $y_{12} \approx |y|$

intrinsic CPV mixing phases, defined with respect to the dominant $\Delta U = 2$ dispersive and absorptive mixing amplitudes Kagan & Silvestrini 2021

ICHEP, July 20th 2024

Roberto Ribatti | Mixing and time-dependent CPV in Charm decays at LHCb

need for at least two interfering amplitudes with different weak ϕ and strong δ phases

$$a_f^d = \frac{|\mathcal{A}(M \to f)|^2 - |\mathcal{A}(\overline{M} \to \overline{f})|^2}{|\mathcal{A}(M \to f)|^2 + |\mathcal{A}(\overline{M} \to \overline{f})|^2} \propto \sin(\phi_2 - \phi_1)\sin(\delta_2 - \delta_1)$$

Roberto Ribatti | Mixing and time-dependent CPV in Charm decays at LHCb

Ratio biases – Ghost background proxy

- A fraction of D^0 candidates is used to reconstruct both WS D^{*_+} and RS D^{*_-}
- RS D^{*} within 3σ from D^{*} peak, are most likely genuine
 → common WS are are either ghost or combinatorial bkg and discarded to improve signal-to-noise ratio
- In this sample, ghost and combinatorial component can be disentangled looking at angle between π_s^+ and π_s^-
- This pure subsample of common ghost (CG) is used as a proxy for residual ghost bkg

WS/RS Ratio determination – D^* mass fit

- Constraining D^* in the PV improve mass resolution by a factor of 2
- A χ^2 binned fit is performed simultaneously to D^* mass distributions of WS, RS and CG
- Each subsample independently fitted (decay-time interval, data-taking period, and D^0 final state)

Ratio biases – common WS removal

- Removing these WS-RS multiple candidates, a small fraction of proper WS decays are removed, biasing the ratio
- Estimated and subtracted bias $\sim \sigma(R_{K\pi})/5$

excluded region

Ratio biases - Test of ghost bkg. subtraction

- Test capability to correctly remove ghost bkg.
- Fit WS-to-RS ratio in 6 bin of $P_{\text{ghost}}(\pi_s^+)$ with and without ghost component
- When ghosts are neglected clear bias appears
- Adding ghost component removes any dependence
- The subtracted bias on $R_{\kappa\pi}$ from ghost bkg. is ~1%

Ratio biases – Particles misidentification

• Remove background from single mis-ID $D^0 \rightarrow K^+(\neg \pi^+) K^-$ and $D^0 \rightarrow \pi^+(\neg K^+) \pi^-$

 $|m(K\pi) - m(D^0)_{PDG}| < 24 \text{ MeV} (3\sigma)$

- Misreconstructed multibody charm decays found to be negligible in previous studies
- Reduce by factor of 5 background from double mis-ID $D^0 \rightarrow K^-(\neg \pi^-) \pi^+(\neg K^+)$ (RS \neg WS)

 $|m(K\pi)_{swap} - m(D^0)_{PDG}| > 16 \text{ MeV} (1.5 \sigma)$

Subtracted residual bias $\sim \sigma(R_{\kappa_{\pi}})/10$

excluded region (15% signal loss)

Asymmetry bias – Nuisance asymmetry correction

- When $A_{D}(\pi_{s})$ is not small, correction terms appear in equations in previous slide
- Very high asymmetry regions are conservatively removed (15% signal loss)
 → collateral benefit: remove 40% of residual ghost contamination

Alternative observable/parametrization

• Alternative observable/parameterization already presented at previous LHC seminar:

$$R^{+}_{_{K\pi}}(t) \equiv \frac{\Gamma(D^{0}(t) \to K^{+}\pi^{-})}{\Gamma(\overline{D}^{0}(t) \to K^{+}\pi^{-})} \qquad \qquad R^{-}_{_{K\pi}}(t) \equiv \frac{\Gamma(\overline{D}^{0}(t) \to K^{-}\pi^{+})}{\Gamma(D^{0}(t) \to K^{-}\pi^{+})}$$

 $R_{K\pi}^{\pm}(t) = R_{K\pi}(1 \pm A_{K\pi}) + \sqrt{R_{K\pi}(1 \pm A_{K\pi})} (c_{K\pi} \pm \Delta c_{K\pi}) t/\tau_{D^0} + (c'_{K\pi} \pm \Delta c'_{K\pi}) (t/\tau_{D^0})^2$

- $R_{K\pi}$ and mixing observables are unchanged
- CPV observables transform to:

•
$$A_{K\pi}$$
 is the CP asymmetry in DCS

$$\Delta c_{K\pi} \approx x_{12} \sin \phi_2^M \cos \Delta_{K\pi} - y_{12} \sin \phi_2^\Gamma \sin \Delta_{K\pi}$$

$$\Delta c'_{K\pi} \approx \frac{1}{2} x_{12} y_{12} \sin (\phi_2^M - \phi_2^\Gamma)$$

Mixing + *CPV* **fit – Systematic uncertainties**

- Main systematic sources are D^{*+} mass fit model and ghost bkg pdf
- Instrumental asymmetry are relevant only for CPV observables → statistically dominated
- Dominant systematic in previous iteration (decay-time bias) reduced by one order of magnitude
- Total systematic uncertainty improved by a factor of 2 PRD97,031101
- a^d_{KK} and ΔY external inputs are absorbed in the new observable definition

Source	$R_{\kappa\pi} [10^{-5}]$	$c_{\kappa\pi} [10^{-4}]$	$c'_{\kappa\pi}$ [10 ⁻⁶]	$A_{\kappa\pi}$ [10 ⁻³]	$\frac{\Delta c_{K\pi}}{[10^{-4}]}$	$\frac{\Delta c'_{_{K\pi}}}{[10^{-6}]}$
Mass modeling	0.5	0.8	0.9	1.4	0.8	0.8
Ghost soft pions	0.4	0.8	0.8	1.1	0.8	1.1
Instrumental asymm.				1.2	0.7	0.7
$a^d_{\kappa\kappa}$ ext. input		<u></u>	_	1.1	1-1	_
ΔY ext. input	_	_	_		0.1	0.1
Doubly Mis-ID bkg.	0.1	0.1	0.1	_	_	
Common removal	0.2	—	—	—		—
Decay-time bias	0.1	0.2	0.1	0.1	—	- :
m_{D^0}/ au_{D^0} ext. input		0.1	0.1	—		-
Total syst. uncertainty	0.7	1.1	1.2	2.4	1.3	1.4
Statistical uncertainty	1.9	3.3	3.5	5.5	3.3	3.5
Total uncertainty	2.0	3.5	3.7	6.0	3.6	3.8

Impact on World average

Global fit performed à la HFLAV

JHEP2022.162

•