

Istituto Nazionale di Fisica Nucleare

CP violation in the decay of charmed hadrons at LHCb

Maurizio Martinelli University of Milano Bicocca and INFN On behalf of the LHCb Collaboration

Prague, 20.07.2024

ICHEP

Outline

CP Violation in Charm Decays Recent LHCb Results Summary

Outline

Maurizio Martinelli - CP violation in the decay of charmed hadrons at LHCb | 20.07.2024

B

CP Violation in Charm Decays

Maurizio Martinelli - CP violation in the decay of charmed hadrons at LHCb | 20.07.2024

CP Violation in Charm Hadrons Decays

Unique

Only up-type quark decay in which new physics couplings can be probed

Discovery Tool

- Indirect CPV in Charm[†] decays could probe extremely high **BSM** scales and are highly suppressed in the SM
- **Complementary to direct searches for BSM particles**
- We have billions of decays ready to be studied at LHCb!

Challenging

- Predictions are difficult (not a precision probe)
- Interesting laboratory for non-perturbative QCD and (exotic) hadron dynamics

[†]R. Ribatti's talk "Mixing and time-dependent CP violation in Charm decays at LHCb"

Motivation

Status of CP Violation in Charm Decays

History Being Made Now

- Observed for the first time direct CPV in $D^0 \rightarrow hh$ (h= π ,K) decays in 2019¹ $\Delta A_{CP} = A_{CP}(K^+K^-) - A_{CP}(\pi^+\pi^-) = (-15.4 \pm 2.9) \times 10^{-4}$
- Later separated the measurement between $D^0 \rightarrow KK$ and $D^0 \rightarrow \pi\pi$ decays² $A_{CP}(K^+K^-) = (7.7 \pm 5.7) \times 10^{-4}$

$$A_{CP}(\pi^+\pi^-) = (-23.2 \pm 6.1) \times 10^{-4}$$

Questions

- **Standard Model or Beyond?**
- Theoretical predictions challenged by strong interactions effects
- Strong breaking of U-spin symmetry?

Eur. Phys. J. Spec. Top. 233, 439–456 (2024) and references therein

Motivation

Maurizio Martinelli - CP violation in the decay of charmed hadrons at LHCb | 20.07.2024

⁽¹⁾PRL122(2019)2118032

Extending The Search

Decay Modes

- Any Cabibbo suppressed decay may exhibit CPV
- Cabibbo favored decays have CPV=0 also in BSM scenarios
- **Doubly Cabibbo suppressed decay may have larger CPV in BSM scenarios**

Dalitz Plot Analyses

- **CPV** observables arise from interference $a_{CP} \propto \sin(\phi_1 - \phi_2) \sin(\delta_1 - \delta_2)$
- In two-body decays $\delta_1 \delta_2$ is given by the decay mode, and may not be the most sensitive for CPV
- Multi-body decays offer all values of this difference in the phase space Depending on the amplitude structure, there may be regions highly sensitive to CPV

6

Maurizio Martinelli - CP violation in the decay of charmed hadrons at LHCb | 20.07.2024

Latest LHCb Results

Maurizio Martinelli - CP violation in the decay of charmed hadrons at LHCb | 20.07.2024

CPV in D⁺ \longrightarrow **K**⁺**K**⁻**T**⁺

Motivation

- Cabibbo suppressed D⁺ decay with largest BF
- Can use Cabibbo favored D_s⁺ as control

Strategy

Latest LHCb Results

Maurizio Martinelli - CP violation in the decay of charmed hadrons at LHCb | 20.07.2024

LHCB-PAPER-2024-019

Raw asymmetries of signal and control samples

Č⊂ DEGLI STUDI MILANO

CPV in $D^+ \rightarrow K^+K^-\pi^+ - Binning and Asymmetry$

Latest LHCb Results

Maurizio Martinelli - CP violation in the decay of charmed hadrons at LHCb | 20.07.2024

CPV in D⁺ \rightarrow **K**⁺**K**⁻**T**⁺ - **Results**

Model-Independent Approach

- No localised CPV in the D⁺ \rightarrow K⁺K⁻ π ⁺ found $\chi^2/n_{dof} = 31.8/22 \longrightarrow P = 8.1\%$
- Sensitivity limited by statistics

Local CPV

• Consistent with 0:

 $A_{CP|S}^{\phi\pi^+} = (0.95 \pm 0.43 \pm 0.26) \times 10^{-3}$

 $A_{CP|S}^{K^{*0}K^{+}} = (-0.26 \pm 0.56 \pm 0.18) \times 10^{-3}$

• Most precise measurement to date

Latest LHCb Results

reliminan

LHCB-PAPER-2024-019

Systematic Uncertainties

- Kinematic equalisation of D_s⁺ to D⁺ samples
- Fit model
- Meson lifetimes
- Trigger selection

Cross-Checks

- Consistency over D momentum
- Impact of detection and reconstruction asymmetry studied with simulations and calibration samples
- Impact of production asymmetry negligible
- Method validated with 10k pseudoexperiments

CPV in D^o \longrightarrow K^o_sK[±] π [∓]

Motivation

Cabibbo suppressed decay dominated by $D^0 \rightarrow K^{*\mp} K^{\pm}$

 $D^0 \rightarrow K^0_S K^{*0}$

- Theoretical predictions of larger CPV in $D^0 \to K^0 \bar{K}^0$ wrt $D^0 \to K^+ K^{-1}$
- Control samples of Cabibbo favored decays $D^0 \rightarrow K^- \pi^+ \pi^- \pi^+$ $D^0 \to K^0_{\rm S} \pi^+ \pi^-$

Strategy - Energy Test

Unbinned, model independent search for local CPV²

$$T \equiv \frac{1}{2n(n-1)} \sum_{\substack{i,j \neq i}}^{n} \psi_{ij} + \frac{1}{2\bar{n}(\bar{n}-1)} \sum_{\substack{i,j \neq i}}^{n} \sum_{j \neq i}^{n} \psi_{ij} + \frac{1}{2\bar{n}(\bar{n}-1)} \sum_{\substack{i,j \neq i}}^{n} \sum_{j \neq i}^{n} \psi_{ij} + \frac{1}{2\bar{n}(\bar{n}-1)} \sum_{j \neq i}^{n} \sum_{j \neq i}^{n} \psi_{ij} + \frac{1}{2\bar{n}(\bar{n}-1)} \sum_{j \neq i}^{n} \sum_{j \neq i}^{n} \psi_{ij} + \frac{1}{2\bar{n}(\bar{n}-1)} \sum_{j \neq i}^{n} \sum_{j \neq i}^{n} \psi_{ij} + \frac{1}{2\bar{n}(\bar{n}-1)} \sum_{j \neq$$

Latest LHCb Results

Maurizio Martinelli - CP violation in the decay of charmed hadrons at LHCb | 20.07.2024

JHEP 03 (2024) 107

Energy Test Significance

P-Value

- Fraction of samples with larger T value than the one from data gives the P-value

Cross-Checks

- Flat distribution of P-values found
- Similarly the effect of instrumental asymmetries can be checked

Latest LHCb Results

Maurizio Martinelli - CP violation in the decay of charmed hadrons at LHCb | 20.07.2024

JHEP 03 (2024) 107

Distribution of H₀ built by sampling the dataset and randomly assigning the D⁰ flavor to the candidate

Energy Test run on control samples by randomly splitting to a size comparable to the signal dataset

CPV in D⁰ \longrightarrow **K**⁰ $_{s}$ **K**[±]**T** \mp - **Results**

Backgrounds

Combinatorial

Background-enhanced samples return flat P-values distributions

Physical

Simulated $D^0 \rightarrow K^0_{s}\pi^+\pi^-\pi^0$, $D^0 \rightarrow K^0_{s}\pi^+\pi^-$, and $D^0 \rightarrow K^0_{s}K^+K^-$ Found that when selected could not mimic CPV

No CPV Found

• P-values $D^0 \to K_S^0 K^- \pi^+ : 70\%$ $D^0 \to K_S^0 K^+ \pi^- : 66\%$

Latest LHCb Results

Maurizio Martinelli - CP violation in the decay of charmed hadrons at LHCb | 20.07.2024

JHEP 03 (2024) 107

Honorable Mentions

Unbinned

• Energy test on $D^0 \rightarrow \pi^+\pi^-\pi^0$ Run2 6/fb data - 2.5M D⁰ decays P = 62%

Binned

• Miranda technique on $D_{(s)}^+ \rightarrow K^+K^-K^+$ Run2 5.6/fb data - 1M D_s^+ and 1.3M D⁺ decays P(D⁺) = 31.6% P(D_s⁺) = 13.3%

JHEP 07 (2023) 067

Latest LHCb Results

Maurizio Martinelli - CP violation in the decay of charmed hadrons at LHCb | 20.07.2024

Maurizio Martinelli - CP violation in the decay of charmed hadrons at LHCb | 20.07.2024

Conclusions

CPV in Charm Still a Developing Field

- Observed in two-body decays
- Observing it in other decay channels would clarify the picture In recent years, significant effort has been dedicated to studying multi-body decays, aided by a comprehensive understanding of the LHCb detector

Run3 Data

- LHCb upgraded to record (among others) even larger charm datasets
- The precision on the two-body CPV will become even smaller
- The chances of observing it in other decay channels will increase; otherwise, we will impose stronger limits on CP violation in those channels
- A fully software-based trigger will simplify the analysis of the efficiency of multibody decays

