

2Nº INTERNATIONAL CONFERENCE ON HIGH ENERGY PHYSICS 18-24 July 2024

In search of new Physics with Lepton Flavor Violation in $\Upsilon(3S) \rightarrow e^{\pm}\mu^{\mp}$ at BABAR

Nafisa Tasneem On behalf of the BaBar Collaboration July 18 - 24, 2024.

Outline of the Talk

- Motivation: Charged Lepton Flavor Violation
- Theoretical Expectations and Experimental Limits
- Asymmetric PEP-II Collider and BaBar Detector
- Data, MC and Data Driven Background
- Analysis Strategy
 - Signal and Background Characteristic
 - A Selection Criterion
 - Validation of Using the Data Driven Background
- Results and Indication for New Physics
- Conclusion

Motivation

- Lepton Flavor Violation (LFV) in the neutral lepton sector has already indicated by the observation of neutrino oscillations by the Super-Kamiokande Observatory and the Canadian Sudbury Neutrino Observatories (SNO).
- Such an oscillation mechanism cannot induce observable LFV in the charged lepton sector.
- Charged Lepton flavor violating (CLFV) processes are strongly suppressed in the standard model by powers of (small) neutrino masses, e.g. $\left(\frac{\Delta m_{\nu}^2}{M_W^2}\right)^2 \leq 10^{-48}$ [1]
- Observation of CLFV is, therefore, a clear sign of new physics (NP) beyond the SM.

[1] Phys. Rev. Lett. 104, 151802

Motivation

Table: CLEO and BABAR results on different decay modes of Υ .

Experiments	Measurements	Results	Confidence	
			Level %	
BABAR	$\mathcal{B}\left(\Upsilon(3S) \to e^{\pm}\tau^{\mp}\right)$	$< 5 imes 10^{-6}$	90	
BABAR	$\mathcal{B} (\Upsilon(3S) \to \mu^{\pm} \tau^{\mp})$	$<4.1 imes10^{-6}$	90	
BABAR	$\mathcal{B} (\Upsilon(3S) \to e^{\pm} \mu^{\mp})$	$< 3.6 imes 10^{-7}$	90	NEW!
CLEO	$\mathcal{B} (\Upsilon(3S) \to \mu^{\pm} \tau^{\mp})$	$< 6 imes 10^{-6}$	95	
CLEO	$\mathcal{B} (\Upsilon(3S) \to \mu^{\pm} \tau^{\mp})$	$<14.4\times10^{-6}$	95	
CLEO	$\mathcal{B} (\Upsilon(3S) \to \mu^{\pm} \tau^{\mp})$	$<20.3\times10^{-6}$	95	
				4

Phys. Rev. Lett. 128 (2022) 9, 091804

- BABAR reports the first search for electron-muon LFV in the decay of a Υ (3S) resonance.
- With the results of $\Upsilon(3S)$ we placed constraints on New Physics (NP) processes that include LFV.

Theoretical Background

• Let us assume that a vector boson V_i (here V_i could be either a fundamental state, such as the Z^0 , or a quark-antiquark bound state such as the ϕ , J/ψ , or Υ) couples to $e^{\pm}\mu^{\mp}$. The effective coupling between the vector boson V_i and $e^{\pm}\mu^{\mp}$ can be written as

$$[\mathcal{B}(\mu \to 3e)]_{V-\text{ exch.}} \approx \frac{\Gamma(V \to e^+ e^-) \Gamma(V \to e^\pm \mu^\pm)}{\Gamma^2(W \to e\nu)} \left(\frac{M_W}{M_V}\right)^6.$$

Using $\mathcal{B}(\mu \rightarrow eee) < 1.0 \times 10^{-12}$ [2] and other data pertaining to the e^+e^- widths of the various vector mesons V_i , we find

$$\mathcal{B}\left(\Upsilon(3S) \to e^{\pm} \mu^{\mp}\right) \le 2.5 \times 10^{-8}$$

- $\mu \rightarrow eee$ decay amplitude can be significantly reduced if there are kinematical suppressions. Such suppressions are possible when the effective vector boson couplings involve momentum factors. According to Nussinov [3], the size of the vector boson exchange contribution reduce by a factor of $\frac{M_{\mu}^2}{2M_{\Upsilon(3S)}^2}$ which is 3×10^{-5} .
- Thus, new modified bound on $\mathcal{B}(\Upsilon(3S) \to e^{\pm}\mu^{\mp})$ reduced by $\leq 1 \times 10^{-3}$

ntasneem@stfx.ca

^[2] Bellgardt, et al., Nucl.Phys. B299 (1988)[3] S. Nussinov, et. al. PRD 63 (2001)

Charged Lepton Flavor Violation in Upsilon Decays

Data, MC Sample

Signal and Background

- $\Upsilon(3S) \rightarrow e^{\pm}\mu^{\mp}$: required two primary track signal of e^{\pm} and μ^{\mp}
- Centre of Mass (CM) momentum: $p_{e^{\pm}} \sim \frac{\sqrt{s}}{2} = E_B$ and $p_{\mu^{\pm}} \sim \frac{\sqrt{s}}{2} = E_B$ where E_B = beam energy in CM
- Angle between the two lepton tracks must satisfy $\theta_{12}^{CM} > 179^{\circ}$ to emerge as back-to-back.
- Energy deposit by μ^{\mp} track on the Electromagnetic Calorimeter (EMC) > 50 MeV
- EMC acceptance $24^{\circ} < \theta_{Lab} < 130^{\circ}$ etc.
- Optimized PID selection for $e^{\pm} \mu^{\mp}$ track

Sample Background Event $e^-e^+ \rightarrow \tau^{\pm}\tau^{\mp} \rightarrow e^{\pm}\mu^{\mp} + 4\nu$

Selection criteria on the lepton momentum plane

The lepton momenta must satisfy the condition which is defining a circle of radius $\left(\frac{p_e}{E_B}-1\right)^2+\left(\frac{p_{\mu}}{E_B}-1\right)^2=(0,1)^2=0.01$ Where, $p_{e^{\pm},\mu^{\pm}}\sim\frac{\sqrt{s}}{2}=E_B$

ntasneem@stfx.ca

Systematic Study

- We reversed two major cuts to check the $\Upsilon(4S)$ data/MC agreement.
- $e^+e^- \rightarrow \Upsilon(4S)$ of 78.31/fb pre-selected as $e^{\pm}\mu^{\mp}$ and $\mu^{\pm}\mu^{\mp}$
- Disagreement arises due to uncertainties in PID, Tracking, kinematics, trigger etc.
- The difference in continuum background and MC background (in the energy band 6-8 GeV) was 1.2%

Selection criterion	Signal efficiency (%)	$\Upsilon(3S)$ BG	Continuum BG	Events in data
Preselection	80.20 ± 0.12	75516 ± 180	725003 ± 500	945 480
Optimized PID	50.74 ± 0.15	5180 ± 50	320910 ± 330	358 322
Two tracks in final state	23.54 ± 0.13	0	14.1 ± 2.2	18
Lepton momentum	26.84 ± 0.12	87 ± 6	253 ± 9	302
Back-to-back	24.02 ± 0.13	0.5 ± 0.5	36 ± 6	39
EMC acceptance	24.95 ± 0.13	0	13.5 ± 2.2	17
Energy on EMC	24.52 ± 0.13	0	16.9 ± 2.4	19
All criteria	23.42 ± 0.13	0	12.2 ± 2.1	15

Impact of each component of the selection on the signal efficiency, background and data

Final Invariant Mass Distribution of $e^{\pm}\mu^{\mp}$

Summary and Result Υ (3S) $\rightarrow e^{\pm}\mu^{\mp}$

Component value	Uncertainties by source		
Signal efficiency:	Lepton momentum cut:	0.0068 (2.9%)	
0.2342	Back-to-back cut:	0.0026 (1.1%)	
	All other cuts:	0.0028 (1.2%)	
	MC statistics:	0.0003 (0.13%)	
	Total	± 0.0078 (3.3%)	
	N_{γ} : 117.7 × 10 ⁶ ± 1.2 ×	106 (1.0%)	
	BG: 12.2 ± 2.3 (19%)		
Candidate events	15 (27.0 fh^{-1})		

Table: Summery of systematic uncertainties. The values of efficiency, background, and number of $\Upsilon(3S)$ decays are presented in the first column and their uncertainties in the second column.

• Calculating the branching fraction from $\frac{N_{\text{Candidate}} - N_{BG}}{\varepsilon_{sig} \times N_{Y}}$ gives

$$\mathcal{B}[\Upsilon(3S) \to e^{\pm} \mu^{\mp}] = [1.0 \pm 1.4(\text{stat}) \pm 0.8(\text{syst})] \times 10^{-7}$$

• We set an upper limit at 90% confidence level (C.L.) on the branching fraction by using the "CLs" method.

$$\mathcal{B}[\Upsilon(3S) \rightarrow e^{\pm} \mu^{\mp}] < 3.6 \times 10^{-7} @ 90\% \text{ C.L.}$$

• This result is the first reported experimental upper limit on Υ (3S) $\rightarrow e^{\pm}\mu^{\mp}$.

Implication For New Physics (NP)

• Using the relationship,

$$\frac{\left(\frac{g_{NP}^2}{\Lambda_{NP}}\right)^2}{\left(\frac{4\pi\alpha_{QED}Q_b}{M_{\Upsilon(3S)}}\right)^2} = \frac{\mathcal{B}(\Upsilon(3S))}{\mathcal{B}(\Upsilon(3S))}$$

we can set an upper limit on NP $\frac{\Lambda_{NP}}{g_{NP}^2} \ge 80 \,\text{TeV}$ @90% C.L.

where, $\frac{g^2_{NP}}{\Lambda_{NP}} = \frac{\text{Effective coupling of the new physics}}{\text{Energy scale of the NP, given by the mass of the NP propagator.}}$

-
$$Q_b = -\frac{1}{3}$$
 is the b-quark charge

- α_{3S} is the fine structure constant at the $M_{\gamma(3S)}$ energy scale.
- Using the world average $\mathcal{B}(\Upsilon(3S) \rightarrow \mu^+\mu^-) = 2.18 \pm 0.21$ [4]

[4] P. A. Zyla et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2020, 083C01 (2020).

ntasneem@stfx.ca

Conclusion

Upper limit at 90% confidence level (C.L.) on the branching fraction

$\mathcal{B}[\Upsilon(3S) \to e^{\pm} \mu^{\mp}] < 3.6 \times 10^{-7} @ 90\% \text{ C.L.}$

• A limit on NP is $\frac{\Lambda_{NP}}{q_{NP}^2} \ge 80 \,\mathrm{TeV}$ @90% CL [Phys. Rev. Lett. 128 (2022) 9, 091804]

- This is the first reported experimental upper limits on the branching • fraction of $\Upsilon(3S) \rightarrow e^{\pm}\mu^{\mp}$.
- The measurement we report here is several orders of magnitude more sensitive than the indirect limit $\mathcal{B}(\Upsilon(3S) \rightarrow e^{\pm} \mu^{\mp}) \leq 1 \times 10^{-3}$.

Thanks

Back up: Theoretical Upper limit (Indirect)

Nussinov, Peccei, Zhang [1]

- Assume coupling of Υ to eµ looks like: $L_{eff} = gV_{e\mu}\bar{\mu}\gamma_{\alpha}eV^{\alpha}$
- Through Fig 1. this coupling contributes to $A \ (\mu \rightarrow 3e)$

$$A(\mu \to 3e) = (\bar{u}_{\mu}(p)\gamma^{\alpha}u_{e}(k_{3}))(\bar{v}_{e}(k_{1})\gamma_{\alpha}u_{e}(k_{2}))\frac{g_{V_{e\mu}}g_{V_{ee}}}{M_{V}^{2} - S} \dots (1)$$

-11

CI.

 $[\mathbf{T}](\mathbf{V})$

2 17

(Left) A vector exchange diagram contributing to $\mu \rightarrow 3e$ (Right) Ordinary muon decay, $\mu \rightarrow ev\bar{v}$, which proceeds via W exchange.

• BF(
$$\mu \rightarrow \text{eee}$$
) $\leq 1.0 \times 10^{-12}$

- BF($\mu \rightarrow e \nu \bar{\nu}$) $\simeq 100 \%$
- BF(W $\rightarrow e^+ \nu) \simeq (10.71 \pm 0.09) \%$

•
$$BF(\Upsilon(3S) \to l^+l^-) \simeq (2.18 \pm 0.21) \%$$

- $\Gamma(\Upsilon(3S) = (20.32 \pm 1.85) \ keV$
- $\Gamma(W) = (2.046 \pm 0.049) \ GeV$

Since
$$[\Gamma(V \to e^+e^-)] \sim g^2 V_{ee} M_V$$
 and
 $[\Gamma(V \to e^\pm \mu^\mp)] \sim g^2 V_{e\mu} M_V$, while $[\Gamma(W \to e\nu)] \sim g_W^2 M_W$

1

$$[BR(\mu \to 3e)]_{V-exch} \approx \frac{[\Gamma(V \to e^+e^-)][\Gamma(V \to e^\pm \mu^\pm)]}{[\Gamma^2(W \to e\nu)]} (\frac{M_W}{M_V})^6 \qquad --(3)$$

$$BR(\Upsilon \to e\mu) = BR(\mu \to eee) \frac{\Gamma(W \to e\nu)^2}{\Gamma(\Upsilon)\Gamma \to ee} (\frac{M_{\Upsilon}}{M_W})^6 \quad \dots \quad (4)$$
$$BR(\Upsilon(3S) \to e^{\pm}\mu^{\mp} \le 2.5 \times 10^{-8}.$$

S.Nussinov, et. al. estimate that the contribution of the virtual $\Upsilon(3S) \rightarrow e^{\pm}\mu^{\mp}$ to the $\mu \rightarrow eee$ rate would be reduced by approximately $M^2_{\mu'}(2 M^2_{\Upsilon})$ leading to a re-calculated indirect bound: BF($\Upsilon(3S) \rightarrow e^{\pm}\mu^{\mp}$) < 1× 10⁻³ [1] Nussinov, et. al. PRD 63, 016003 (2001)

Back up: Analysis Scheme

- Blind Analysis: To eliminate experimenter's bias.
- **Pre-Selection:** Needs a special background filter to collect $e^{\pm}\mu^{\mp}$ events efficiently.
- Final Selection by the analyst: Applied on the pre-selected events
- PID Selection: Multivariate Technique applied, tested 16 different PID selectors.
- Optimized Electron and Muon selectors: $\frac{\varepsilon_{e\mu}}{\sqrt{(1+N_{BG})}}$ where

 $\varepsilon_{e\mu}$ is the final efficiency as determined by signal MC and

 N_{BG} is the number of expected background events

Final Selection:			
2 tracks (1 electron and 1 muon in the final state), one in each hemisphere;	Peaking Background		
$24^{\circ} < \theta_{Lab} < 130^{\circ}$ EMC acceptance for both tracks.	Source of	Data Driven	Peaking
The lepton momenta must satisfy the following condition $\left(\frac{p_e}{E_{Beam}} - 1\right)^2 + \left(\frac{p_{\mu}}{E_{Beam}} - 1\right)^2 < 0.01$ where $E_{Beam} = \frac{\sqrt{s}}{2}$	Background	Continuum Background Υ(4S)	Background from Generic Υ(3S) MC
Angle between the two lepton tracks must satisfy $\theta_{12}^{CM} > 179^{\circ}$ to ensure they emerged as back to back	Tight PID selection	12.2 ± 2.1	0
	Loose PID	N/A	1.80 ± 0.9
Energy deposit by Muon track on the Electromagnetic Calorimeter should be greater than 50 MeV.	selection		

Back up: Impact of each component of the selection on the signal efficiency, background and data

Selection criterion	Signal efficiency (%)	$\Upsilon(3S)$ BG	Continuum BG	Events in data
Preselection	80.20 ± 0.12	75516 ± 180	725003 ± 500	945 480
Optimized PID	50.74 ± 0.15	5180 ± 50	320910 ± 330	358 322
Two tracks in final state	23.54 ± 0.13	0	14.1 ± 2.2	18
Lepton momentum	26.84 ± 0.12	87 ± 6	253 ± 9	302
Back-to-back	24.02 ± 0.13	0.5 ± 0.5	36 ± 6	39
EMC acceptance	24.95 ± 0.13	0	13.5 ± 2.2	17
Energy on EMC	24.52 ± 0.13	0	16.9 ± 2.4	19
All criteria	23.42 ± 0.13	0	12.2 ± 2.1	15

- The first row provides information on the pre-selection of the events as $\Upsilon(3S) \rightarrow e^{\pm} \mu^{\mp}$.
- The last row provides information after applying all selection criteria.
- Rows 2-7 provides information when all requirements are applied except the criterion associated with the particular row.
- Third column represents the background events from $e^+e^- \rightarrow \Upsilon(3S)$ defining as generic MC Background.
- Fourth column represents the background events from $e^+e^- \rightarrow \Upsilon(4S)$ defining as data-driven Continuum Background.
- Event numbers in the third and forth columns are luminosity-normalized.
- The last column gives the number of events in the 27 fb⁻¹ data sample after unblinding.
- We have added an additional uncertainty of ± 0.9 any potential peaking background from the $\Upsilon(3S)$ decays which estimate the background events 12.2 ± 2.3