The Faint Particle Trigger for the IceCube Neutrino Observatory

ICHEP Prague 2024 Timo Stürwald

BERGISCHE UNIVERSITÄT WUPPERTAL

IceCube and DeepCore

- Detection of neutrinos via Cherenkov radiation of charged secondaries
- Searches for particles beyond the standard model including fractionally charged particles
- 1 km³ of instrumented ice
- IceCube: 125 m string and 17 m PMT spacing
- DeepCore: 72 m string and 7 m PMT spacing

Fractionally charged particles

- Fractionally charged particles (FCPs) appear in several extensions of the standard model
- Produced Cherenkov photons, ionization, pair production and photonuclear interactions $\propto z^2$
- The detector signature for FCPs are faint through going tracks
- A previous IceCube analysis searched for charges between e/3 and 2e/3
- For a charge of e/3 the triggers start to be inefficient
- The standard triggers work on HLC hits
 - Hard Local Coincidence (HLC): in a time frame of \pm 1 µs around the hit a neighboring sensor on the same string is hit
 - Soft Local Coincidence (SLC): Single hit
- FCPs with a charge of e/3 dominantly produce SLC hits
- Built the Faint Particle Trigger (FPT) that includes SLC hits

Faint Particle Trigger structure

- FCPs dominantly produce SLC hits which are not forwarded to the standard triggers
- For the FPT all HLC and SLC hits in DeepCore are forwarded
- In a sliding time window with a size of 2500 ns four cut variables are calculated

- Fractionally Charged Particles (FCP) with a charge of 1/3 and a mass of 1 TeV
- Only events that produce at least 10 hits in DC
- Fixed Rate Trigger (FRT) reads out the whole detector for 10 ms every 300s
- Detector Noise simulation
 - Radioactive decay (low abundance of ⁴⁰K in glass spheres)
 - Correlated component
 - Thermal noise
- Detector noise produces a lower amount of hits in the time windows compared to the signal

- Calculate the velocity of $\frac{x!}{2(x-2)!}$ hit pairs (combinations with itself and commutative ones are not calculated)
- The velocity cut interval:
 0.033 c ≤ vel ≤ 1.033 c
- Count the velocity consistent hit pairs (Doubles) per time window
- Detector noise clusters at lower #Doubles compared to the FCPs

Directional clustering of Doubles

- Calculate the direction for all Doubles per ٠ time window
- For Detector Noise there should be no • preferred direction
- Histogram the direction in 20° bins ٠
- Example for one time window of a FCP ٠ event (simulated zenith 80.5°)
- Select the bin value of the bin with the maximum count

- Apply this simultaneously on the azimuth and zenith angle
- Detector Noise clusters at lower values

- Divide the number of SLC hits in the time window by the number of all hits in the time window ٠
- Combined signal efficiency: Standard Trigger + Faint Particle Trigger ٠
- The combined signal efficiency is "stable" up to a cut of >0.75, because additional triggered events have a high SLC fraction value and only double triggered events are lost

Summary Cuts 1-4

Performance and results

- Performance plot from South Pole Test System
- FPT consumes ≈ 1% of CPU utilization and produces additional ≈3.4 GB of data per day
- At the South Pole ≈ 1 TB of triggered data are saved and ≈ 100 GB of filtered data are transferred via satellite per day
- The signal efficiency for FCP is improved by a factor of ≈ 1.55 while increasing the event rate by ≈ 1.004

Standard Trigger + FPT 87 ± 1

 2793.9 ± 0.3 3.4

Result on low energy neutrinos

- Applied the trigger to low energy neutrino simulations in DeepCore
- A: 1 GeV ≤ Energy <4 GeV
- B: 4 GeV ≤ Energy <12 GeV
- C: 12 GeV \leq Energy <100 GeV
- Analyses using low energy neutrinos will include the new events in their selections

Flavor and energy	Relative signal efficiency increase
$v_{e,A}$	1.11 ± 0.02
$ u_{e,B}$	1.18 ± 0.02
$v_{e,C}$	1.10 ± 0.01
$ u_{\mu,A}$	1.11 ± 0.02
$ u_{\mu,B}$	1.15 ± 0.01
$\mathcal{V}_{ au,B}$	1.14 ± 0.02
$ u_{ au,B}$	1.15 ± 0.01

Trigger rate

- The FPT is online since
 November 28 2023
- ≈ 10% correspond to events that are only triggered by the FPT
- The trigger rate trend aligns with the trend of the main triggers
- Correlated to seasonal variations of the atmospheric temperature

13

IceCube Preliminary

IN_ICE_FAINT_PARTICLE

Processing

- The processing of FPT events will reduce the rate by approximately one order of magnitude
- The final steps apply cleaning and reconstruction algorithms to the remaining events
 - For SLC dominated events existing cleaning algorithms had to be adjusted
 - Several cleaning methods were compared
 - Comparison of existing reconstruction algorithms and other machine learning based approaches are currently conducted

Summary

- The FPT was developed, tested and is running at South Pole since November 2023
- It significantly improves the signal efficiency for FCP while increasing the event rate by $\approx 0.5\%$
- Additional low energy neutrinos are triggered with a relative signal efficiency increase up to 1.18

Outlook

- Finalize the reconstruction algorithms for the new events
- Use new events in BSM and low energy analyses

Backup

BERGISCHE UNIVERSITÄT WUPPERTAL

Hit pair velocity

Cut 3 for FRT data

Noise components

