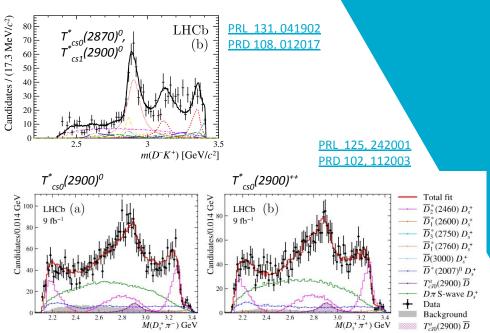


Spectroscopy studies with $B \rightarrow DDX$ decays at LHCb

Raúl Iraq Rabadán Trejo

The University of Warwick.

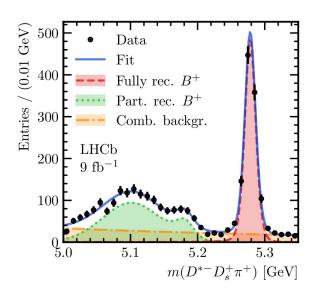

On behalf of the LHCb collaboration

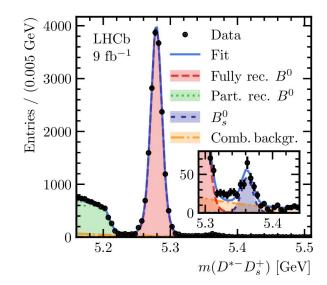
$B \rightarrow DDX$ decays

- Big family of topologically similar decays.
 - Final states containing two charmed hadrons
- Important for spectroscopy studies:
 - Excited charm (strange) mesons,
 - Charmonium spectrum,
 - Exotic states (tetraquarks, pentaquarks).
- Relevant results on mesonic exotic states:
 - $\circ \quad B^+ \longrightarrow D^+ D^- K^+$
 - Observation of two open-charmed structures in the D⁻K⁺ channel:
 - $\circ \quad B^0 \to D^0 D_s^+ \pi^-, B^+ \to D^- D_s^+ \pi^+$
 - Observation of a pair of open-charmed states decaying to $D_s^+\pi^-$ and $D_s^+\pi^+$.

- Amplitude analysis and branching fraction measurement of $B^+ \rightarrow D^{*-} D_s^+ \pi^+$ decays. arXiv: 2405.0098 submitted to JHEP.
- Observation of new charmonium (-like) states in $B^+ \rightarrow D^{*\pm} D^{\mp} K^+$ decays.

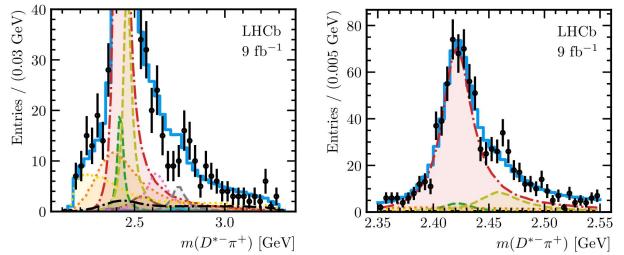
arXiv: 2406.03156 submitted to PRL.

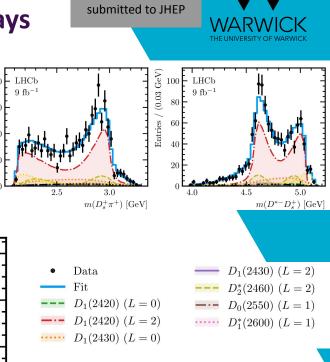

• First observation of the $\Lambda_b \rightarrow D^+ D^- \Lambda$ decay. arXiv: 2403.03586 submitted to JHEP.



Amplitude analysis and branching fraction measurement of $B^+ \rightarrow D^{*-}_{s} D^{+}_{s} \pi^+$ decays

- Measured ratio of branching fractions: • with respect to $B^0 \rightarrow D^{*-} D_c^{*-}$.
- Observation of the $B^+ \rightarrow D_s^{*-} D_s^{*+} \pi^+$ decay
 - Using partially reconstructed $D_s^{*+} \rightarrow D_s^{+} \gamma$ and $D_s^{+} \pi^0$ $\mathcal{R}^* = \frac{\mathcal{B}(B^+ \rightarrow D^{*-}D_s^{*+}\pi^+)}{\mathcal{B}(B^+ \rightarrow D^{*-}D_s^{+}\pi^+)} = 1.32 \pm 0.07 \pm 0.14.$ decays

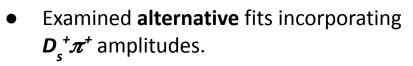



 $\mathcal{R} = \frac{\mathcal{B}(B^+ \to D^{*-} D_s^+ \pi^+)}{\mathcal{B}(B^0 \to D^{*-} D^+)} = 0.173 \pm 0.006 \pm 0.010,$

Amplitude analysis and branching fraction measurement of $B^+ \rightarrow D^{*-}_{s} D_{s}^+ \pi^+$ decays

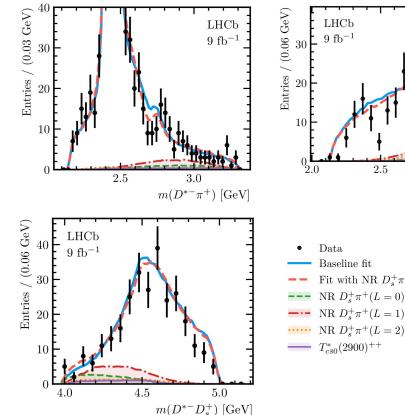
- First amplitude analysis of $B^+ \to D_s^{+} D_s^{+} \pi^+$ decays.
- Baseline fit exclusively incorporates activity in the $D^* \pi^+$ channel.
- Amplitude dominated by
 - D₁(2420), D₁(2430), D₂^{*}(2460), D₀(2550), D₁^{*}(2600), D₂(2740).

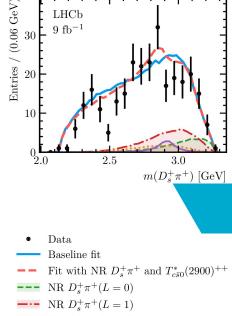
 $D_2(2740) \ (L=1)$


 $D_2(2740) \ (L=3)$

Non- D_s^+ backgr. Comb. backgr.

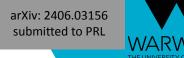
arXiv: 2405.0098

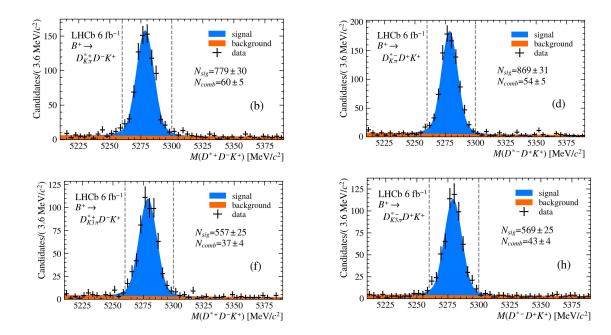



Amplitude analysis and branching fraction measurement of $B^+ \rightarrow D^{*-} D_c^+ \pi^+$ decays

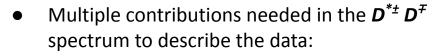
- Motivated by the discovery of $T^*_{cen}(2900)^{++}$ in $B^+ \to D^- D_s^+ \pi^+$.
- No evidence of a scalar $D_{c}^{+} \pi^{+}$ state with • parameters fixed to those of T^{*}_{c=0}(2900)⁺⁺,
- Upper limit on its fit fraction:

< 2.3% at 90% CL

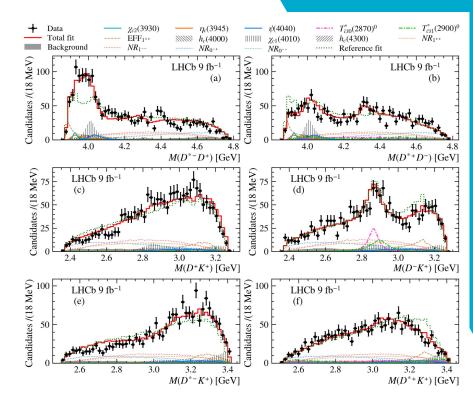



arXiv: 2405.0098 submitted to JHEP

Observation of new charmonium(-like) states in $B^+ \rightarrow D^{*\pm} D^{\mp} K^+$ decays

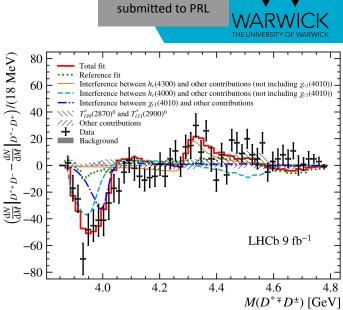


- Simultaneous analysis of the $B^+ \rightarrow D^{*+} D^- K^+$ and $B^+ \rightarrow D^{*-} D^+ K^+$ decays.
- Decay amplitudes for $B^+ \rightarrow R(D^{*+}D^-)K^+$ and $B^+ \rightarrow R(D^{*-}D^+)K^+$ linked by C-parity.
 - Allows determination of the C-parities of the *R* resonances.



Observation of new charmonium(-like) states in $B^+ \rightarrow D^{*\pm} D^{\mp} K^+$ decays

- Four non-resonant: 1⁻⁻, 0⁻⁻, 1⁻⁻, 0⁻⁻,
- χ_{c2} (3930), ψ (4040) with fixed parameters.
- η_c (3945), h_c (4000), χ_c (4010) and h_c (4300), with statistical significances of 10 σ , 9.1 σ , 16 σ and 6.4 σ .
- Fit includes the $T^*_{cs0}(2870)^0$, $T^*_{cs1}(2900)^0$ states, first found in $B^+ \rightarrow D^+ D^- K^+$ decays
 - \circ Statistical significances of 11 σ , 9.2 σ , respectively,
 - confirming their existence in a new decay.


arXiv: 2406.03156 submitted to PRL

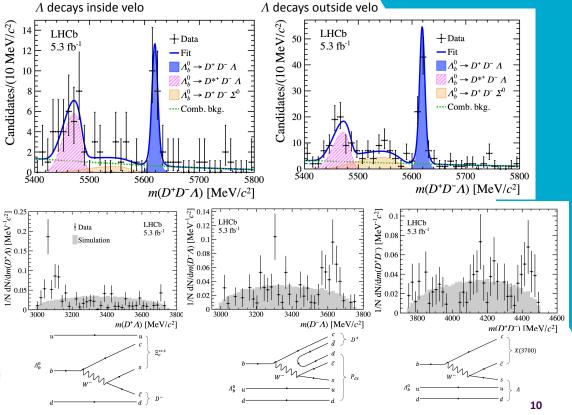
Observation of new charmonium(-like) states in $B^+ \rightarrow D^{*\pm} D^{\mp} K^+$ decays

- $J^{P} = 1^{+}$ states are the main contribution in the $D^{*\pm} D^{\mp}$ mass spectrum.
- Interferences due to different *C*-parities results in different patterns in M(*D*^{*+} *D*⁻) and M(*D*^{*-} *D*⁺).
- **J^{PC}** values for $\eta_c(3945)$, $h_c(4000)$, $\chi_c(4010)$ and $h_c(4300)$ \circ 0⁻⁺, 1⁺⁻, 1⁺⁺, 1⁺⁻,

This work		Known states [6]		$c\bar{c}$ prediction [34]	
$\eta_c(3945)$	$J^{PC} = 0^{-+}$	X(3940) [9, 10]	$\overline{J}^{PC} = ?^{??}$	$\eta_c(3S) J^{PC} = 0^{-+}$	
$m_0 = 3945 {}^{+28}_{-17} {}^{+37}_{-28}$	$\Gamma_0 = 130 {}^{+92}_{-49} {}^{+101}_{-70}$	$m_0 = 3942 \pm 9$	$\Gamma_0 = 37 {}^{+27}_{-17}$	$m_0 = 4064$ $\Gamma_0 = 80$	
$h_c(4000)$	$J^{PC} = 1^{+-}$	$T_{c\bar{c}}(4020)^0$ [35]	$J^{PC} = ?^{?-}$	$h_c(2P) J^{PC} = 1^{+-}$	
$m_0 = 4000 {}^{+17}_{-14} {}^{+29}_{-22}$	$\Gamma_0 = 184 {}^{+71}_{-45} {}^{+97}_{-61}$	$m_0 = 4025.5 \substack{+2.0 \\ -4.7 \pm} 3.1$	$\Gamma_0 = 23.0 \pm 6.0 \pm 1.0$		
$\chi_{c1}(4010)$	$J^{PC} = 1^{++}$			$\chi_{c1}(2P)$ $J^{PC} = 1^{++}$	
$m_0 = 4012.5 \substack{+3.6 \\ -3.9 \\ -3.7} \prod_{-3.7} \Gamma_0 = 62.7 \substack{+7.0 \\ -6.4 \\ -6.6} \prod_{-6.4} \prod_{-6.6} \prod_{-6.4} \prod_{-6.6} \prod_{-6.4} \prod_{-6.6} \prod_{-6.4} \prod_{-6.6} \prod_{-6.4} \prod_{-6.6} \prod_{-6$				$m_0 = 3953$ $\Gamma_0 = 165$	
$h_c(4300)$	$J^{PC} = 1^{+-}$			$h_c(3P) J^{PC} = 1^{+-}$	
$m_0 = 4307.3^{+6.4}_{-6.6}{}^{+3.3}_{-4.1}$	$\Gamma_0 = 58 {}^{+28}_{-16} {}^{+28}_{-25}$	2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		$m_0 = 4318$ $\Gamma_0 = 75$	
[9] <u>PRL 98, 082001</u> [10] PRL 100, 202001 [35] P	RL 115, 182002	$\chi_c(4274)$ [36]	$J^{PC} = 1^{++}$	$\chi_{c1}(3P)$ $J^{PC} = 1^{++}$	
110 PRL 100, 202001 · · ·	RL 127, 082001	$m_0 = 4294 \pm 4 {}^{+6}_{-3}$	$\Gamma_0 = 53 \pm 5 \pm 5$	$m_0 = 4317$ $\Gamma_0 = 39$	

arXiv: 2406.03156

Figure 3: Difference between the $M(D^*D)$ distributions of the $B^+ \rightarrow D^{*+}D^-K^+$ and $B^+ \rightarrow D^*-D^+K^+$ decays. Only interference between states with the same J^P but different *C*-parities, and reflections from $T^{*}_{c30,1}$ resonances, have significant contributions. The reference fit where $h_c(4000), \chi_{c1}(4010)$ and $h_c(4300)$ are not included is shown as green-dotted line.


Observation of the $\Lambda_{_{\mathbf{b}}} \rightarrow \mathsf{D}^{\scriptscriptstyle +} \operatorname{D}^{\scriptscriptstyle -} \Lambda$ decay

- Branching fraction measured relative to $B^0 \rightarrow D^+ D^- K_s^0$.
- $\Lambda_{\rm b} \rightarrow {\rm D}^{*+} {\rm D}^{-} \Lambda$ decay also observed as a partially reconstructed component.
- Indications of various intermediate resonances in $\Lambda_{\rm h} \rightarrow {\rm D}^+ {\rm D}^- \Lambda$
 - Future exploration with larger statistics,
 - $\circ \quad \text{ or similar decay channels like} \\ \Lambda_{\rm b} \to {\rm D}^{\overline{\mathbf{0}}} \overline{{\rm D}}{}^{0} \Lambda$

$$\mathcal{R} = \frac{\sigma_{A_b^0}}{\sigma_{B^0}} \times \frac{\mathcal{B}(A_b^0 \to D^+ D^- \Lambda)}{\mathcal{B}(B^0 \to D^+ D^- K_{\mathrm{S}}^0)} = 0.179 \pm 0.022 \pm 0.014,$$

$$\mathcal{B}(\Lambda_b^0 \to D^+ D^- \Lambda) = (1.24 \pm 0.15 \pm 0.10 \pm 0.28 \pm 0.11) \times 10^{-4},$$

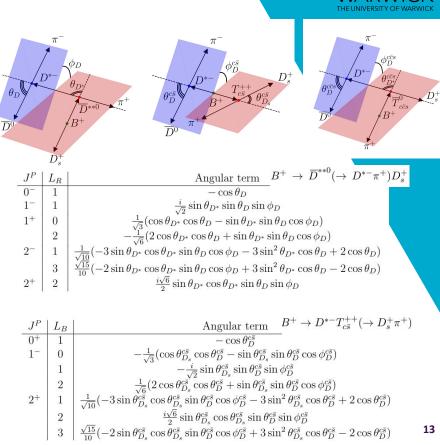
Summary

- Presented latest spectroscopy results from $B \rightarrow DDX$ decays at LHCb.
 - First amplitude analysis of $B^+ \to D_s^{*-} D_s^{*+} \pi^+$.
 - New charmonium(-like) states observed in $B^+ \rightarrow D^{*\pm} D^{\mp} K^+$.
 - Confirmation of $T^*_{cs0}(2870)^0$, $T^*_{cs1}(2900)^0$ states, previously observed in $B^+ \to D^+ D^- K^+$.
- Results presented based on Run 1 and Run 2 datasets.
 - Still more to come.
- Currently collecting Run 3 datasets.
 - Full software trigger will increase efficiency by about a factor 2.
 - Expecting high statistics and unprecedented production of heavy hadrons.

BACKUP SLIDES

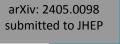
Amplitude analysis of $B^+ \rightarrow D^{*-}_{s} D^{+}_{s} \pi^+$ decays

• 4D phase space: $\mathcal{A}(m^2(D^{*-}\pi^+), m^2(D_s^+\pi^+), \theta_D, \phi_D)$


$$\mathcal{A} = \mathcal{A}^{(D^*\pi)} + \mathcal{A}^{(D_s\pi)} + \mathcal{A}^{(D^*D_s)}.$$

$$\mathcal{A}^{(\mathrm{ch})} = \sum_{n} \mathcal{A}_{n}^{(\mathrm{ch})} = \sum_{n} \mathcal{R}_{n}^{(\mathrm{ch})} \mathcal{H}_{n}^{(\mathrm{ch})}.$$

$$\mathcal{H}_{n}^{(D^{*}\pi)} = \sum_{\lambda=0,\pm1} h_{n,\lambda}^{(D^{*}\pi)} d_{0,\lambda}^{J_{n}} \left(\theta_{D^{*}}\right) d_{\lambda,0}^{1} \left(\theta_{D}\right) \exp\left(i\lambda\phi_{D}\right),$$


$$\mathcal{H}_{n}^{(D_{s}\pi)} = \sum_{\lambda=0,\pm1} h_{n,\lambda}^{(D_{s}\pi)} d_{\lambda,0}^{J_{n}} \left(\theta_{D_{s}}^{c\bar{s}}\right) d_{\lambda,0}^{1} \left(\theta_{D}^{c\bar{s}}\right) \exp\left(i\lambda\phi_{D}^{c\bar{s}}\right),$$

$$\mathcal{H}_{n}^{(D^{*}D_{s})} = \sum_{\lambda=0+1} h_{n,\lambda}^{(D^{*}D_{s})} d_{0,\lambda}^{J_{n}} \left(\theta_{D^{*}}^{c\bar{c}s}\right) d_{\lambda,0}^{1} \left(\theta_{D}^{c\bar{c}s}\right) \exp\left(i\lambda\phi_{D}^{c\bar{c}s}\right)$$

LH

• Fit Fractions and phases.

Component	Fit fraction [%]	Phase [rad]
$D_1(2420)$ S-wave	$3.8 \pm 1.7 \pm 0.8^{+1.3}_{-0.1}$	$-1.96 \pm 0.16 \pm 0.10^{+0.17}_{-0.05}$
$D_1(2420)$ D-wave	$71.0 \pm 4.4 \pm 4.6^{+0.0}_{-6.0}$	0 (fixed)
$D_1(2430)$ S-wave	$14.2 \pm 2.5 \pm 2.4^{+3.1}_{-2.0}$	$+0.14 \pm 0.11 \pm 0.13^{+0.06}_{-0.18}$
$D_1(2430)$ D-wave	$0.5 \pm 0.9 \pm 1.5^{+0.2}_{-0.5}$	$-2.99 \pm 0.42 \pm 0.84^{+0.23}_{-0.55}$
$D_2^*(2460)$	$11.7 \pm 1.4 \pm 0.8^{+0.0}_{-0.7}$	$+3.14 \pm 0.11 \pm 0.14 \substack{+0.05 \\ -0.04}$
$D_0(2550)$	$2.3 \pm 0.8 \pm 0.7^{+0.3}_{-1.7}$	$-2.24 \pm 0.21 \pm 0.26^{+0.05}_{-0.25}$
$D_1^*(2600)$	$4.8 \pm 1.0 \pm 0.9^{+1.1}_{-2.0}$	$+0.32 \pm 0.16 \pm 0.16^{+0.37}_{-0.01}$
$D_2(2740)$ P-wave	$0.4 \pm 0.4 \pm 0.2^{+0.1}_{-0.1}$	$-0.02 \pm 0.56 \pm 0.32^{+0.16}_{-0.59}$
$D_2(2740)$ F-wave	$2.3 \pm 0.7 \pm 0.9^{+0.4}_{-0.1}$	$-0.09 \pm 0.27 \pm 0.21^{+0.08}_{-0.23}$

Sum of fit fractions $| 111.0 \pm 5.2 \pm 4.2 |$

Amplitude analysis of $B^+ \rightarrow D^{*\pm} D^{\mp} K^+$ decays

2

- Amplitudes for $B^+ \to R(D^{*+}D^-)K^+$ and $B^+ \to R(D^{*-}D^+)K^+$ linked by C-parity.
- Total amplitude: coherent sum of resonant and non-resonant components in all channels.

$$\mathcal{A}(x) = \frac{1+d}{2} \left\{ \sum_{j \in R(D^{*\pm}D^{\mp})} c_j A_j(x) + \sum_{k \in R(D^{*-}K^+, D^+K^+)} c_k A_k(x) \right\} \\ + \frac{1-d}{2} \left\{ \sum_{j \in R(D^{*\pm}D^{\mp})} C_j \times c_j A_j(x) + \sum_{l \in R(D^{*+}K^+, D^-K^+)} c_l A_l(x) \right\}$$

- Both S-wave and D-wave amplitudes contribute significantly to $\mathbf{R} \rightarrow \mathbf{D}^{*\pm} \mathbf{D}^{\pm}$ decays for $\mathbf{J}^{\mathbf{P}} = \mathbf{1}^{+}$.
- Line shapes for these partial waves:

$$f_{R,S/D}(m) = \frac{\gamma_{S/D}}{m_0^2 - m^2 - im_0[\gamma_S^2 \Gamma_S(m) + \gamma_D^2 \Gamma_D(m)]},$$

LHCb

Amplitude analysis of $B^+ \rightarrow D^{*-}_{s} D^{+}_{s} \pi^+$ decays

Table 1: Resonant and nonresonant components included in the baseline fit and their spin parities, fit fractions and product branching fractions $(\mathcal{B}(B^+ \to RC) \times \mathcal{B}(R \to AB))$, where A, B, C are the three final-state particles. To obtain the branching fractions including both $R \to D^{*+}D^-$ and $R \to D^{*-}D^+$, the values in the table should be multiplied by a factor of two. The first uncertainties are statistical, estimated with a bootstrap method [32], the second are systematic and and the third are from the uncertainty of the $B^+ \to D^{*+}D^-K^+$ branching fraction. The masses and widths of the resonances marked with the [†] symbol are fixed to their PDG values [6].

Component	$J^{P(C)}$	Fit fraction [%]	Fit fraction [%]	Branching fraction
Component	J	$B^+ \rightarrow D^{*+} D^- K^+$	$B^+ \to D^{*-}D^+K^+$	$[10^{-4}]$
EFF ₁₊₊	1^{++}	$10.9^{+2.3}_{-1.2}{}^{+1.6}_{-2.1}$	$9.9^{+2.1}_{-1.0}{}^{+1.4}_{-1.9}$	$0.74^{+0.16}_{-0.08}{}^{+0.11}_{-0.14}\pm0.07$
$\eta_{c}(3945)$	0^{-+}	$3.4_{-1.0}^{+0.5}{}_{-0.7}^{+1.9}$	$3.1^{+0.5}_{-0.9}{}^{+1.7}_{-0.6}$	$0.23^{+0.04}_{-0.07}{}^{+0.13}_{-0.05}\pm0.02$
$\chi_{c2}(3930)^{\dagger}$	2^{++}	$1.8 {}^{+0.5}_{-0.4} {}^{+0.6}_{-1.2}$	$1.7^{+0.5}_{-0.4}{}^{+0.6}_{-1.1}$	$0.12^{+0.03}_{-0.03}{}^{+0.04}_{-0.08}\pm0.01$
$h_c(4000)$	1^{+-}	$5.1^{+1.0}_{-0.8}{}^{+1.5}_{-0.8}$	$4.6^{+0.9}_{-0.7}{}^{+1.4}_{-0.7}$	$0.35^{+0.07}_{-0.05}{}^{+0.10}_{-0.05}\pm0.03$
$\chi_{c1}(4010)$	1^{++}	$10.1 {}^{+1.6}_{-0.9} {}^{+1.3}_{-1.6}$	$9.1^{+1.4}_{-0.8}{}^{+1.2}_{-1.4}$	$0.69^{+0.11}_{-0.06}{}^{+0.09}_{-0.11}\pm0.06$
$\psi(4040)^{\dagger}$	1	$2.8 {}^{+0.5}_{-0.4} {}^{+0.5}_{-0.5}$	$2.6^{+0.5}_{-0.4}{}^{+0.4}_{-0.5}$	$0.19^{+0.04}_{-0.03}{}^{+0.03}_{-0.03}\pm0.02$
$h_c(4300)$	1^{+-}	$1.2^{+0.2}_{-0.5}{}^{+0.2}_{-0.2}$	$1.1^{+0.2}_{-0.5}{}^{+0.2}_{-0.2}$	$0.08^{+0.01}_{-0.03}{}^{+0.02}_{-0.01}\pm0.01$
$T^*_{\bar{c}\bar{s}0}(2870)^{0}$ [†]	0^{+}	$6.5^{+0.9}_{-1.2}{}^{+1.3}_{-1.6}$	-3	$0.45^{+0.06}_{-0.08}{}^{+0.09}_{-0.10}\pm0.04$
$T^*_{\bar{c}\bar{s}1}(2900)^{0\ \dagger}$	1^{-1}	$5.5^{+1.1}_{-1.5}{}^{+2.4}_{-1.6}$		$0.38^{+0.07}_{-0.10}{}^{+0.16}_{-0.11}\pm0.03$
$\mathrm{NR}_{1^{}}(D^{*\mp}D^{\pm})$	1	$20.4^{+2.3}_{-0.6}{}^{+2.1}_{-2.6}$	$18.5^{+2.1}_{-0.5}{}^{+1.9}_{-2.3}$	$1.39^{+0.16}_{-0.04}{}^{+0.14}_{-0.17}\pm0.12$
$\mathrm{NR}_{0^{}}(D^{*\mp}D^{\pm})$	$0^{}$	$1.2 {}^{+0.6}_{-0.1} {}^{+0.7}_{-0.6}$	$1.1 {}^{+0.6}_{-0.1} {}^{+0.6}_{-0.5}$	$0.08^{+0.04}_{-0.01}{}^{+0.05}_{-0.04}\pm0.01$
$\mathrm{NR}_{1^{++}}(D^{*\mp}D^{\pm})$	1^{++}	$17.8 {}^{+1.9}_{-1.4} {}^{+3.6}_{-2.6}$	$16.1 {}^{+1.7}_{-1.3} {}^{+3.3}_{-2.3}$	$1.21^{+0.13}_{-0.10}{}^{+0.24}_{-0.17}\pm0.11$
$\mathrm{NR}_{0^{-+}}(D^{*\mp}D^{\pm})$	0^{-+}	$15.9 {}^{+3.3}_{-1.2} {}^{+3.3}_{-3.3}$	$14.5^{+3.0}_{-1.1}{}^{+3.0}_{-3.0}$	$1.09^{+0.23}_{-0.08}{}^{+0.22}_{-0.23}\pm0.09$

arXiv: 2406.03156 submitted to PRL

arXiv: 2406.03156 submitted to PRL

Amplitude analysis of $B^+ \rightarrow D^{*-} D_s^+ \pi^+$ decays

Table 2: Comparison of the $T^{*0}_{\bar{c}\bar{s}0,1}$ properties obtained in this work to those found previously in $B^+ \to D^+ D^- K^+$ decays [2]. In the branching fractions determined in this work, the $T^{*0}_{\bar{c}\bar{s}0,1}$ masses and widths are fixed to the previously measured values [2].

Property	This work	Previous work	
$T^*_{\bar{c}\bar{s}0}(2870)^0 \text{ mass [MeV]}$	$2914 \pm 11 \pm 15$	$\frac{1100003 \text{ WOLK}}{2866 \pm 7}$	
$T_{\bar{c}\bar{s}0}(2870)^0$ mass [MeV] $T_{\bar{c}\bar{s}0}^*(2870)^0$ width [MeV]	$128 \pm 22 \pm 23$	57 ± 13	
$T^*_{\bar{c}\bar{s}1}(2900)^0$ mass [MeV]	$2887\pm8\pm6$	2904 ± 5	
$T^*_{\bar{c}\bar{s}1}(2900)^0$ width [MeV]	$92\pm16\pm16$	110 ± 12	
$\mathcal{B}(B^+ \to T^*_{\bar{c}\bar{s}0}(2870)^0 D^{(*)+})$	$(4.5^{+0.6}_{-0.8}{}^{+0.9}_{-1.0}\pm0.4)\times10^{-5}$	$(1.2 \pm 0.5) \times 10^{-5}$	
$\mathcal{B}(B^+ \to T^*_{\bar{c}\bar{s}1}(2900)^0 D^{(*)+})$	$(3.8^{+0.7}_{-1.0}{}^{+1.6}_{-1.1}\pm 0.3) \times 10^{-5}$	$(6.7 \pm 2.3) \times 10^{-5}$	
$\frac{\mathcal{B}(B^+ \to T^*_{\bar{c}\bar{s}0}(2870)^0 D^{(*)+})}{\mathcal{B}(B^+ \to T^*_{\bar{c}\bar{s}1}(2900)^0 D^{(*)+})}$	$1.17 \pm 0.31 \pm 0.48$	0.18 ± 0.05	