CP Violation in **Beauty to Open Charm Decays** at LHCb

Aidan Wiederhold, on behalf of the LHCb Collaboration

University of Manchester, United Kingdom

> **ICHEP 2024**, **Prague, Czechia**

20th July 2024

LHCb

- Detector designed for precision measurements of Beauty and Charm decays
- Doing our best to fully exploit our existing dataset
 - and preparing to do even more in Run 3!
- High precision vertexing and tracking
 - Excellent decay time and kinematics resolution
- High performance PID
 - ~ 95 % K efficiency
- Precise measurement of γ is one primary focus of LHCb
 - Aiming for sub-degree uncertainty

Schematic of the Run 1/2 LHCb detector [JINST]

CKM angle γ

- CKM matrix links quark mass and flavour eigenstates
- Unitary in the SM
 - \implies triangles in the complex plane
- Use measurements to overconstrain them and search for new physics
- Also compare direct to indirect measurements
 - CKMfitter 2023 indirect world average $\gamma = (66.3^{+0.7}_{-1.9})^{\circ}$
 - HFLAV 2024 direct world average $\gamma = (66.4^{+2.8}_{-3.0})^{\circ}$
- γ measurements have very low theory uncertainties excellent benchmark parameter [JHEP]

CKMfitter fit of the db unitarity triangle

New LHCb y combination

2022

Species	Value $[^{\circ}]$	68.3% CL Uncertainty [°]	95.4% CL Uncertainty
B^+	60.6	$+4.0 \\ -3.8$	$+7.8 \\ -7.5$
B^0	82.0	$\substack{+8.1\\-8.8}$	$+17 \\ -18$
B_s^0	79	$^{+21}_{-24}$	$+51 \\ -47$
All	63.8	$+3.5 \\ -3.7$	$+6.9 \\ -7.5$

Aidan Wiederhold

[LHCb-CONF-2022-003]

[°]

y & time integrated CPV

- Interference between $b \rightarrow c$ and $b \rightarrow u$ transitions
 - Can't tell which flavour D in each event
- Squared amplitude depends on

$$\begin{split} \Delta \delta_B &+ \gamma \text{ for } B^+ / B^0 \\ \Delta \delta_B &- \gamma \text{ for } B^- / \overline{B}^0 \\ & \Longrightarrow \text{ asymmetries } \frac{\Gamma(B^- \to f) - \Gamma(B^+)}{\Gamma(B^- \to f) + \Gamma(B^+)} \\ \text{Compare } B^{\pm} \text{ or } B^0 / \overline{B}^0 \text{ amplitudes to explanation of the set of$$

• "Self-tagging", the charges of the K^{*0} children $\frac{3}{200}$ depend on the flavour of the B

 $B^0 \rightarrow DK^{*0}, D \rightarrow h^+ h^{\prime-}(\pi^+\pi^-)$

- Simultaneous measurement of
 - $D \to K^{\pm} \pi^{\mp} (\pi^+ \pi^-)$
 - $D \rightarrow \pi^+ \pi^- (\pi^+ \pi^-)$
 - $D \rightarrow K^+ K^-$
- Fit interference effects* to obtain 4 solutions of γ
 - Solution most compatible with existing measurements is $\gamma = (61.7 \pm 8.0)^{\circ}$
 - Require further input, such as $D \to K_{S}^{0}h^{+}h^{-}$, to resolve the ambiguity

*See backup

Aidan Wiederhold

$B^0 \to DK^{*0}, D \to K_S^0 h^+ h^-$

- Binned D decay Dalitz plane analysis*
 - Model independent
- Simultaneous mass fit to extract x_+, y_+
- Extract γ from $x_{\pm} = r_{B^0}^{DK^*} \cos(\Delta \delta_{B^0}^{DK^*} \pm \gamma)$ $y_{\pm} = r_{B^0}^{DK^*} \sin(\Delta \delta_{B^0}^{DK^*} \pm \gamma)$

• Combination with $D \rightarrow h^+ h^{-}(\pi^+ \pi^-)$ yields $= (63.2^{+6.9})^{\circ}$

• Much closer to where B^+ was in the previous LHCb combination!

*See backup

Aidan Wiederhold

 $D \rightarrow K^0_{S}h^+h^-$ and $D \rightarrow hh(hh)$ (right)

- Simultaneous measurement of γ using
 - $D \to K^{\pm} \pi^{\mp} (\pi^+ \pi^-)$
 - $D \rightarrow \pi^+ \pi^- (\pi^+ \pi^-)$
 - $D \rightarrow K^+ K^-$
 - $D \to K^0_{\mathcal{S}}h^+h^-$
- First time for $B^{\pm} \to DK^{*\pm}, D \to K^0_S h^+ h^-$
- Interpretation in terms of γ yields $\gamma = (63 \pm 13)^{\circ}$

In preparation, LHCb-PAPER-2024-023

Per-bin asymmetries determined by the CP fit parameters (red) and signal yields when allowed to float freely (black) with statistical uncertainties

Statistical confidence regions for the measured $x_{\pm i}$, $y_{\pm i}$ values (left) and the contours for the extraction of $r_B^{DK^*}$ and γ (right)

- First observation of the doubly Cabibbo suppressed $B^{\pm} \to DK^{*\pm}, D \to \pi^{\pm}K^{\mp}(\pi^{+}\pi^{-})$
- Amplitudes for favoured modes are of the form

•
$$A^2 \propto 1 + r_B^2 r_D^2 + 2r_B r_D I$$

•
$$r_B, r_D < 1$$

- Suppressed modes suffer from low statistics
 - But their amplitudes allow for large interference effects

•
$$A^2 \propto r_D^2 + r_B^2 + 2r_B r_D I$$

• We need more data!

Aidan Wiederhold

Time dependent CPV

- Interference between decay with and without mixing
 - \implies time-dependent mixing
 - Use flavour tagging to determine the initial flavour
- Difficult environment for flavour tagging
 - LHCb: $\epsilon_{\text{eff}} \equiv \epsilon (1 - 2\omega)^2 \sim 4 - 8\%$
 - Belle II: $\epsilon_{\text{eff}} \sim 30\%$, clean e^+e^- environment

Aidan Wiederhold

$\rightarrow D_{\rm s}^{-}K^{+}$

- CP observables depend on $\gamma 2\beta_s$ (a.k.a $\gamma + \phi_s$)
- Simultaneous fit to B_s^0 and D_s^- invariant masses
 - Obtain sweights to project signal into decay time
- Fit decay time distribution to extract CP observables
- Run 1 was in tension with γ from $B_s^0 \to D_s^- K^+ \pi^+ \pi$ $\gamma = (44 \pm 12)^{\circ} \Longrightarrow$ poor constraint on γ from B_{s}^{0}
- Combination of Runs 1 & 2 yields $\gamma = (81^{+12}_{-11})^{\circ}$
- The most precise measurement of γ in B_s^0 decays from a single experiment

In preparation, LHCb-PAPER-2024-020

(0.20)

- Measurement of CP parameters related to β and β_s
- Similar analysis method
- Run 2 result is the first rejection of CP symmetry by more than 0.0 6σ in a single measurement of $B^0 \rightarrow D^+D^-$ decays
- For $B^0 \rightarrow D^+D^-$, combined with Run 1:

•
$$S_{D^+D^-} = -0.55 \pm 0.09$$

• $C_{D^+D^-} = 0.16 \pm 0.09$

• For $B_s^0 \rightarrow D_s^+ D_s^-$, combined with Run 1:

•
$$\phi_s = -0.05 \pm 0.09$$
 rad

•
$$|\lambda_{D_s^+ D_s^-}| = 1.05 \pm 0.10$$

Consistent with CP symmetry

In preparation, LHCb-PAPER-2024-027

Beauty and Charm [In preparation, LHCb-CONF-2024-004]

- Combination of:
 - 19 LHCb B decay measurements (4 new, 3 superseded)*
 - 11 LHCb D decay measurements (1 new, 1 superseded)*
- 27 auxiliary inputs from LHCb, HFLAV, CLEO-c and BESIII (1 new, 2 updated)*
- Many Beauty and Charm measurements share parameters and provide complementary information
 - Detailed description of method in 2013
 - Added Charm in 2021
- Produces a single LHCb value for 29 physics parameters of interest (+ nuisance parameters)
- Latest update being released soon LHCb-CONF-2024-004

- Decreased uncertainty by $\sim 0.7^{\circ}$ since 2022
- Reduced tension between the $B_{\rm c}^0$ decays
- B^0 now sits amongst the B^+ measurements

In preparation, LHCb-CONF-2024-004

Per B species

Species	Value $[^{\circ}]$	68.3% CL Uncertainty [°]	95.4% CL Uncertainty [°]	Species	Value [°]	68.3% CL Uncertainty [°]	95.4% CL Uncerta
B^+	60.6	$+4.0 \\ -3.8$	+7.8 -7.5	B^+	63.4	$+3.2 \\ -3.3$	$+6.4 \\ -6.5$
B^0	82.0	$\begin{array}{c} +8.1 \\ -8.8 \end{array}$	$\begin{array}{c} +17 \\ -18 \end{array}$	B^0	64.6	$+6.5 \\ -7.5$	$^{+12}_{-17}$
B_s^0	79	$^{+21}_{-24}$	+51 -47	B_s^0	75	$^{+10}_{-11}$	±20
All	63.8	$+3.5 \\ -3.7$	$+6.9 \\ -7.5$	All	64.6	±2.8	$+5.5 \\ -5.7$

Aidan Wiederhold

- Some small tension between time dependent and time integrated measurements
- Clearly need to push harder on time dependent analyses to get this uncertainty down

[In preparation, LHCb-CONF-2024-004]

time integrated analyses

Summary

- Several measurements of γ and one of β , β_s
 - Many new or improved methods
- Update of the Beauty and Charm combination, uncertainty on γ reduced significantly
- Still pushing our existing dataset as far as we can
 - Statistically limited Run 3 will be even better!

- Thanks to all the proponents of these analyses
- Thanks for listening!

Aidan Wiederhold

Evolution of the LHCb direct measurement of γ

- For K_{S}^{0} it's necessary to distinguish between those reconstructed with π tracks in different sub-detectors
 - Long-Long (LL) have hits in each tracking subdetector
 - Down-Down (DD) are not seen in the VErtexLOcator $(VELO) \implies$ slightly worse resolution

Aidan Wiederhold

• LHCb:
$$\epsilon_{\text{eff}} \equiv \epsilon (1 - 2\omega)^2 \sim 4 - 8 \%$$

• Belle II: $\epsilon_{\text{eff}} \sim 30\%$, clean e^+e^- environment

• ϵ tagging efficiency, ω wrong tag fraction

Same side (SS) - uses particles in the hadronisation of the B

• Other side (OS) - assume another b quark (fair) and use its decay

y from 2 and 4-body D decays

• For any D final state can measure the charge asymmetry

$$\frac{\Gamma(B^- \to f) - \Gamma(B^+ \to f)}{\Gamma(B^- \to f) + \Gamma(B^+ \to f)}$$
 "Difference in

• For 2-body modes can also measure ratios such as

- These extend fairly simply to 4-body modes, multiply interference terms by
 - $D \rightarrow \pi^+ \pi^- \pi^+ \pi^-$: *CP*-even fraction

• $D \to K^{\pm} \pi^{\mp} \pi^{+} \pi^{-}$: coherence factor - to account for resonances

• The same for B^0 decays

Aidan Wiederhold

n peak heights"

$\gamma \operatorname{from} D \to K_{\mathrm{S}}^0 h^+ h^- \operatorname{decays}$

- Resonances overlap across the Dalitz plane
- Bin the phase space to capture local asymmetries \implies sensitivity to γ
 - For $D \to K_S^0 \pi^+ \pi^-$, $D \to K_S^0 K^+ K^-$ binning comes from CLEO-c
 - Obtained by maximising a binning quality factor $\sum_{i} N_i (c_i^2 + s_i^2)$

scheme from CLEO-c (right)

$B^0 \to DK^{*0}, D \to K^0_S h^+ h^-$

Bin population expectation equation

$$N_i^{\pm} = h^{\pm} [F_{\mp i} + (x_{\pm}^2 + y_{\pm}^2)F_{\pm i} + 2\kappa \sqrt{F_i F_{-i}} (c_i)$$

- Simultaneous mass fit to extract x_+, y_+
 - $\kappa, F_{\pm i}, c_i, s_i$ are fixed to values from previous measurements of LHCb, CLEO/BES

• Extract
$$\gamma$$
 from $x_{\pm} = r_{B^0}^{DK^*} \cos(\Delta \delta_{B^0}^{DK^*} \pm \gamma)$
 $y_{\pm} = r_{B^0}^{DK^*} \sin(\Delta \delta_{B^0}^{DK^*} \pm \gamma)$

- Combination with $D \rightarrow hh(hh)$ yields $(63.2^{+6.9})^{\circ}$
- Much closer to where B^+ was in the previous LHCb combination!

 $D \to K_S^0 h^+ h^-$ and $D \to hh(hh)$ (right)

Fully reconstructed $B^{\pm} \rightarrow D^* h^{\pm}$ decays

- $D \rightarrow K_{\rm S}^0 h^+ h^-$ final state
- *D* originates from $D^* \to D\pi^0$ or $D^* \to D\gamma$
- LL and DD K_{S}^{0} datasets are merged due to low statistics
- $B^{\pm} \rightarrow D^* K^{\pm}$ drives the sensitivity to γ
- $B^{\pm} \rightarrow D^{*}\pi^{\pm}$ provides a relatively large dataset with low CPV \implies good sensitivity to F_{+i}
 - Parameterise $B^{\pm} \rightarrow D^* \pi^{\pm}$ Cartesian parameters in terms of $B^{\pm} \to D^* K^{\pm}$

$$\begin{aligned} x_{\pm}^{D^*\pi} &= x_{\xi} x_{\pm}^{D^*K} - y_{\xi} y_{\pm}^{D^*K} \\ y_{\pm}^{D^*\pi} &= x_{\xi} y_{\pm}^{D^*K} - y_{\xi} x_{\pm}^{D^*K} \end{aligned}$$

•
$$\gamma = (69^{+13}_{-14})^{\circ}$$

Aidan Wiederhold

Fully reconstructed $B^{\pm} \rightarrow D^* h^{\pm}$ decays

• Parameterise $B^{\pm} \rightarrow D^* \pi^{\pm}$ binned expectations with $\xi = \frac{r_B^{D^*\pi}}{r_B^{D^*K}} \exp[i(\delta_B^{D^*\pi} - \delta_B^{D^*\pi})] \text{ such that}$

$$\begin{aligned} x_{\pm}^{D^*\pi} &= \operatorname{Re}(\xi) x_{\pm}^{D^*K} - \operatorname{Im}(\xi) y_{\pm}^{D^*K} \\ y_{\pm}^{D^*\pi} &= \operatorname{Re}(\xi) y_{\pm}^{D^*K} - \operatorname{Im}(\xi) x_{\pm}^{D^*K} \end{aligned}$$

- Also done in the $B^{\pm} \rightarrow Dh^{\pm}$ analysis
- Known from a general derivation [arxiv]

Partially reconstructed $B^{\pm} \rightarrow D^* h^{\pm}$ decays

- The π^0/γ is missed during the reconstruction of the decay
 - Greater signal efficiency, and background pollution
- Greater statistics enables considering the LL and DD $K_{\rm S}^0$ datasets separately
 - Allows separate F_i values
- Maximal correlation with fully reconstructed analysis determined to be 4%, corresponds to a shift of only 0.2° in the uncertainty

•
$$\gamma = (92^{+21}_{-17})^{\circ}$$

Aidan Wiederhold

Time dependent parameter explanations

$$\frac{\mathrm{d}\Gamma(t,d)}{\mathrm{d}t} \propto e^{-t/\tau_{B_{(s)}^0}} \left(\cosh\frac{\Delta\Gamma_q t}{2} + D_f \sinh\frac{\Delta\Gamma_q t}{2} + dC_f \cos\Delta m_q t - dS_f \sin\Delta m_q t\right)$$

The *CP*-violation parameters are defined as

 λ

Aidan Wiederhold

$$\begin{aligned} &\frac{\partial s \, \phi_q}{f_f|^2}, \ C_f = \frac{1 - |\lambda_f|^2}{1 + |\lambda_f|^2}, \ S_f = \frac{2|\lambda_f| \sin \phi_q}{1 + |\lambda_f|^2}, \\ &f = \frac{q}{p} \frac{\bar{A}_f}{A_f} \text{ and } \phi_q = \arg \lambda_f, \end{aligned}$$

111

Combination updates

B decay	D decay	Ref.	Dataset	Status since	D decay	Observable(s)	Ref.	Dataset	Statı
				Ref. [13]					Ref.
$B^{\pm} \rightarrow Dh^{\pm}$	$D \rightarrow h^+ h'^-$	[32]	Run 1&2	As before	$D^0 ightarrow h^+ h^-$	ΔA_{CP}	[41-43]	Run 1&2	As be
$B^{\pm} \rightarrow Dh^{\pm}$	$D \to h^+ h^- \pi^+ \pi^-$	[19]	Run 1&2	\mathbf{New}	$D^0 \to K^+ K^-$	$A_{CP}(K^+K^-)$	[43-45]	$\operatorname{Run} 2$	As be
$B^{\pm} \rightarrow Dh^{\pm}$	$D \to K^{\pm} \pi^{\mp} \pi^{+} \pi^{-}$	[33]	$\mathrm{Run}\;1\&2$	As before	$D^0 ightarrow h^+ h^-$	$y_{C\!P}-y_{C\!P}^{K^-\pi^+}$	[46, 47]	Run 1&2	As be
$B^{\pm} \rightarrow Dh^{\pm}$	$D ightarrow h^+ h'^- \pi^0$	[34]	Run 1&2	As before	$D^0 ightarrow h^+ h^-$	ΔY	[48-51]	Run 1&2	As be
$B^{\pm} \rightarrow Dh^{\pm}$	$D ightarrow K_{ m S}^0 h^+ h^-$	[35]	$\operatorname{Run}1\&2$	As before	$D^0 \to K^+ \pi^-$ (double tag)	$R^{\pm},(x'^{\pm})^2,y'^{\pm}$	[52]	Run 1	As be
$B^{\pm} \rightarrow Dh^{\pm}$	$D \to K^0_{ m S} K^{\pm} \pi^{\mp}$	[36]	$\operatorname{Run}1\&2$	As before	$D^0 \to K^+ \pi^- \text{ (single tag)}$	$R_{K\pi}, A_{K\pi}, c_{K\pi}^{(\prime)}, \Delta c_{K\pi}^{(\prime)}$	[27, 53]	Run 1&2	Upd
$B^{\pm} \rightarrow D^* h^{\pm}$	$D \to h^+ h'^- (PR)$	[32]	$\mathrm{Run}\;1\&2$	As before	$D^0 \rightarrow K^{\pm} \pi^{\mp} \pi^+ \pi^-$	$(x^2 + y^2)/4$	[54]	Run 1	As b
$B^{\pm} \rightarrow D^* h^{\pm}$	$D \to K_{\rm S}^0 h^+ h^- ({\rm PR})$	[20]	$\mathrm{Run}\;1\&2$	\mathbf{New}	$D^0 ightarrow K_{ m S}^0 \pi^+ \pi^-$	x,y	[55]	Run 1	$As \ b$
$B^{\pm} \rightarrow D^* h^{\pm}$	$D \to K_{ m S}^0 h^+ h^- ~({ m FR})$	[21]	$\mathrm{Run}\;1\&2$	\mathbf{New}	$D^0 ightarrow K_{ m S}^0 \pi^+ \pi^-$	$x_{CP},y_{CP},\Delta x,\Delta y$	[56]	Run 1	$As \ b$
$B^{\pm} \rightarrow DK^{*\pm}$	$D ightarrow h^+ h'^-$	[22]	$\mathrm{Run}\;1\&2$	Updated	$D^0 ightarrow K_{ m S}^0 \pi^+ \pi^-$	$x_{CP},y_{CP},\Delta x,\Delta y$	[57, 58]	Run 2	$As \ b$
$B^{\pm} \rightarrow DK^{*\pm}$	$D \to h^+ \pi^- \pi^+ \pi^-$	[22]	$\mathrm{Run}\;1\&2$	Updated	$D^0 \rightarrow \pi^+ \pi^- \pi^0$	$\Delta Y^{ m eff}$	[26]	Run 2	New
$B^{\pm} \rightarrow DK^{*\pm}$	$D ightarrow K_{ m S}^0 h^+ h^-$	[22]	$\operatorname{Run}1\&2$	\mathbf{New}		_	_	_	_
$B^{\pm} \rightarrow D h^{\pm} \pi^+ \pi^-$	$D ightarrow h^+ h'^-$	[37]	Run 1	As before	Charm measu	urements in	the	comb	oina
$B^0 ightarrow DK^{*0}$	$D ightarrow h^+ h'^-$	[23]	$\operatorname{Run}1\&2$	Updated					
$B^0 ightarrow DK^{*0}$	$D \to h^+ \pi^- \pi^+ \pi^-$	[23]	$\mathrm{Run}\;1\&2$	Updated					
$B^0 \to DK^{*0}$	$D ightarrow K_{ m S}^0 h^+ h^-$	[24]	$\operatorname{Run}1\&2$	Updated					
$B^0 ightarrow D^{\mp} \pi^{\pm}$	$D^+ \rightarrow K^- \pi^+ \pi^+$	[38]	Run 1	As before					
$B^0_s ightarrow D^{\mp}_s K^{\pm}$	$D_s^+ ightarrow h^+ h^- \pi^+$	[25, 39]	$\mathrm{Run}\;1\&2$	Updated					
$B^0_s ightarrow D^{\mp}_s K^{\pm} \pi^+ \pi^-$	$D_s^+ ightarrow h^+ h^- \pi^+$	[40]	$\mathrm{Run}\;1\&2$	As before					

Beauty measurements in the combination

Aidan Wiederhold

[In preparation, LHCb-CONF-2024-004]

Combination updates

					Quantity	Value	68.3% CL		95.4	% CL
Decay	Parameters	Source	Ref.	Status since	Quantity	varue	Uncertainty	Interval	Uncertainty	Interval
				Ref [13]	$\gamma [^{\circ}]$	64.6	± 2.8	[61.8, 67.4]	+5.5 -5.7	[58.9, 70.1]
					$r^{DK^{\pm}}_{B^{\pm}}[\%]$	9.73	$+0.21 \\ -0.20 \\ +2.8$	[9.53, 9.94]	$+0.42 \\ -0.40 \\ +5.6$	[9.33, 10.15]
$B^{\perp} \rightarrow DK^{*\perp}$	$\kappa^{DR}_{B^{\pm}}$	LHCb	[59]	As before	$\partial_{B^{\pm}}^{DR} \begin{bmatrix} 0 \end{bmatrix}$	127.4	$+2.0 \\ -3.0 \\ +0.06$	[124.4, 130.2]	+0.0 -6.2 +0.12	[121.2, 133.0]
$B^0 \to DK^{*0}$	$\kappa^{DK^{st 0}}_{B^0}$	LHCb	[60]	$As \ before$	$r_{B^{\pm}}^{ au}$ [%] $\delta^{D\pi^{\pm}}$ [°]	0.49	-0.05 +10	[0.44, 0.55] [281, 301]	-0.10 + 19	[0.39, 0.61]
$B^0 ightarrow D^{\mp} \pi^{\pm}$	eta	HFLAV	[14]	Updated	$r_{B^{\pm}}^{D^{*}K^{\pm}}[\%]$	10.6	$\stackrel{-11}{\pm 1.0}$	[201, 301] [9.6, 11.6]	$\overset{-22}{\pm 2.0}$	[205, 510] [8.6, 12.6]
$B^0_s \to D^{\mp}_s K^{\pm}(\pi\pi)$	ϕ_s	LHCb	[<mark>61</mark>]	Updated	$\delta^{D^*K^\pm}_{B^\pm}[^\circ]$	312	$+6 \\ -7 \\ -11$	[304, 318]	$+12 \\ -16 \\ 0.07$	[296, 324]
$D \rightarrow K^+ \pi^-$	$\cos \delta_D^{K\pi}, \sin \delta_D^{K\pi}, (r_D^{K\pi})^2, x^2, y$	CLEO-c	[<mark>62</mark>]	As before	$r^{D^*\pi^\pm}_{B^\pm} [\%] \ \delta^{D^*\pi^\pm} [\circ]$	0.74	$+0.41 \\ -0.32 \\ +39$	[0.42, 1.15] [17, 76]	$+0.87 \\ -0.62 \\ +94$	[0.12, 1.61]
$D \to K^+ \pi^-$	$A_{K\pi}, A_{K\pi}^{\pi\pi\pi^{0}}, r_{D}^{K\pi} \cos \delta_{D}^{K\pi}, r_{D}^{K\pi} \sin \delta_{D}^{K\pi}$	BESIII	[63]	As before	$r_{B^{\pm}}^{DK^{*\pm}}[\%]$	10.6	$-20 \\ +0.9 \\ -1.0$	[9.6, 11.5]	$-31 \\ +1.7 \\ -2.0$	[8.6, 12.3]
$D \rightarrow h^+ h^- \pi^0$	\mathbf{E}^+ \mathbf{E}^+	CIFO	[64]	A a hafara	$\delta^{DK^{st\pm}}_{B^\pm}[^\circ]$	49	$^{+14}_{-11}$	[38, 63]	$^{+30}_{-23}$	[26,79]
$D \rightarrow n n n$	$\Gamma_{\pi\pi\pi^{0}}, \Gamma_{KK\pi^{0}}$	ULEO-C	[04]	As bejore	$r_{B^0}^{DK^{st 0}}[\%]$	23.4	$^{+1.5}_{-1.6}$	$\left[21.8,24.9\right]$	$^{+2.9}_{-3.3}$	$\left[20.1, 26.3\right]$
$D \rightarrow \pi^+ \pi^- \pi^+ \pi^-$	$F^+_{4\pi}$	CLEO-c+BESIII	[64, 65]	$As \ before$	$\delta^{DK^{st 0}}_{B^0}[^\circ]$	192	± 6	[186, 198]	$^{+13}_{-12}$	[180, 205]
$D \to K^+ K^- \pi^+ \pi^-$	$F^+_{KK\pi\pi}$	BESIII	[66]	New	$r^{D^{+}_{s}K^{\pm}}_{B^{0}_{s^{\pm}}K^{\pm}}[\%]$	33.3	$+3.7 \\ -3.5$	[29.8, 37.0]	$+7.5 \\ -7.1$	[26.2, 40.8]
$D \rightarrow K^+ \pi^- \pi^0$	$r_{\Sigma}^{K\pi\pi^{0}}$, $\delta_{\Sigma}^{K\pi\pi^{0}}$, $\kappa_{\Sigma}^{K\pi\pi^{0}}$	CLEO-c+LHCb+BESIII	[67–69]	As before	$\delta^{D_s'K^\pm}_{B^0_s} [^\circ]_{D^\mp K^\pm \pi^\pm \pi^\pm}$	349	± 6	[343, 355]	± 12	[337, 361]
$D \rightarrow K^{\pm} - \Xi - \pm - \Xi$	$K3\pi \kappa K3\pi \kappa K3\pi$	CLEO + LHCb + DESIII		A a hafama	$r^{D_{s}}_{B_{s}^{0}}{}^{\kappa-\pi^{+}\pi^{+}\pi^{-}}_{\kappa^{+}}$		± 8	[37, 54]	$^{+10}_{-17}$	[29, 62]
$D \rightarrow K^{-\eta + \eta + \eta}$	$T_D^{-}, 0_D^{-}, \kappa_D^{-}$	OLEO-C+LHOD+DESIII	[54, 07-09]	As bejore	$\partial_{B_s^0}^{\pm s} \pi^{\pm} [071]$	[[°]] 345	-12 + 1.3	[333, 358]	$+20 \\ -25 \\ +3.1$	[320, 371]
$D \to K^0_{ m S} K^{\pm} \pi^{\mp}$	$r_D^{\mathbf{K}_{ ilde{\mathbf{S}}}^{\mathbf{K}\pi}},\delta_D^{\mathbf{K}_{ ilde{\mathbf{S}}}^{\mathbf{K}\pi}},\kappa_D^{\mathbf{K}_{ ilde{\mathbf{S}}}^{\mathbf{K}\pi}}$	CLEO	[70]	As before	$r^{D+\pi}_{B^0}$ [%] $sD^{\mp}\pi^{\pm}$ [°]	3.0	-1.2 +25	[1.8, 4.3]	-2.7 +45	[0.3, 6.1]
$D ightarrow K_{ m S}^0 K^{\pm} \pi^{\mp}$	$r_D^{K_{ m S}^0K\pi}$	LHCb	[71]	As before	σ_{B^0} [] $r_{DK^\pm\pi^+\pi^-}$ [2]	い。 「 1 8.0	-36 + 2.7	[-0, 33] [4.7, 10.7]	-77 + 4.9	[-47, 75] $[0.0, 12.9]^*$
					$r_{B^{\pm}}^{D^{\pm}\pi^{\pm}\pi^{+}\pi^{-}}$	6.2	-3.3 +2.2 -3.0	[3.2, 8.4]	-8.0 +3.7 -6.2	$[0.0, 9.9]^*$
					x[%]	0.41	± 0.05	[0.36, 0.45]	± 0.09	[0.31, 0.50]
	Auxiliary inputs to	the complination			y[%]	0.621	$+0.022 \\ -0.021$	[0.600, 0.643]	$+0.044 \\ -0.042$	$\left[0.579, 0.665 ight]$
					$r_D^{K\pi} [\%]$	5.855	$+0.010 \\ -0.009$	[5.846, 5.865]	$^{+0.020}_{-0.019}$	[5.836, 5.875]
					$\delta_D^{K\pi}[^\circ]$	191.6	$^{+2.5}_{-2.4}$	[189.2, 194.1]	$^{+4.9}_{-5.1}$	[186.5, 196.5]
					q/p	0.989	± 0.015	[0.974, 1.004]	$+0.031 \\ -0.030$	[0.959, 1.020]
					$\phi[^\circ]$	-2.5	± 1.2	[-3.7, -1.3]	± 2.5	[-5.0, 0.0]
					$a^{\mathrm{d}}_{K^+K^-} [\%]$	0.06	+0.06 -0.05	[0.01, 0.12]	± 0.11	[-0.05, 0.17]
					$a^{ m d}_{\pi^+\pi^-} [\%]$	0.22	± 0.06	[0.16, 0.28]	± 0.12	[0.10, 0.34]
					$a^{ ext{a}}_{K^{+}\pi^{-}} [\%]$	-0.60	+0.27 -0.26	[-0.86, -0.33]	+0.53 -0.54	[-1.14, -0.07]

[In preparation, LHCb-CONF-2024-004]

Combination results for Beauty and Charm parameters of interest

