

Weak decays of beauty baryons at LHCb

Ulrik Egede, Monash University On behalf of the LHCb collaboration

ICHEP 19 July 2024

Baryons with b quarks

Electroweak penguin decays normally leads to the thought of B meson decays

$$- B^{+} \rightarrow K^{+} I^{+} I^{-}, B^{0} \rightarrow K^{*0} I^{+} I^{-}, B^{0} s \rightarrow \phi I^{+} I^{-}, \dots$$

- $B^{0} \rightarrow K^{*0} \gamma, B^{0} {}_{s} \rightarrow \phi \gamma, ...$
- LHCb has in addition a very large sample of b baryons
 - This means that we get different angular structures in decay
 - Unfortunately Λ_b produced at the LHC are unpolarised at the percent level
 - Past measurements of $\Lambda_b \rightarrow \Lambda \mu^+ \mu^-$, $\Lambda_b \rightarrow p K^- \mu^+ \mu^-$, $\Lambda_b \rightarrow \Lambda \gamma$, $\Lambda_b \rightarrow p K^- \gamma$, ...

resonance	$m_{\Lambda} \left[\text{GeV} / c^2 \right]$	$\Gamma_{\Lambda} \left[\text{GeV}/c^2 \right]$	$2J_{\Lambda}$	P_{Λ}	$\mathcal{B}(\Lambda \to N\overline{K})$
$\Lambda(1405)$	1.405	0.051	1	_	0.50
$\Lambda(1520)$	1.519	0.016	3	_	0.45
$\Lambda(1600)$	1.600	0.200	1	+	0.15 - 0.30
$\Lambda(1670)$	1.674	0.030	1	_	0.20 - 0.30
$\Lambda(1690)$	1.690	0.070	3	_	0.20 - 0.30
$\Lambda(1800)$	1.800	0.200	1	_	0.25 - 0.40
$\Lambda(1810)$	1.790	0.110	1	+	0.05 - 0.35
$\Lambda(1820)$	1.820	0.080	5	+	0.55 - 0.65
$\Lambda(1890)$	1.890	0.120	3	+	0.24 - 0.36
$\Lambda(2110)$	2.090	0.250	5	+	0.05 - 0.25

Ulrik Egede

Ulrik Egede

New analysis of $\Lambda_b \rightarrow pK^-\mu^+\mu^-$ decays

- Analysis based on full run 1 + run 2 dataset of 9 fb⁻¹
- Branching fraction and angular moments measured in bins of
 - q² (squared mass of leptonic system) and
 - m_{pK²} (squared mass of hadronic system)
- Branching fractions normalised to $\Lambda_b \rightarrow J/\psi p K^- decay$
- 46 angular moments for unpolarised Λ_{b}

$$\frac{\mathrm{d}^5\Gamma}{\mathrm{d}\vec{\Phi}} = \frac{3}{8\pi} \sum_{i=1}^{46} K_i(q^2, m_{pK}^2) f_i(\cos\theta_\mu, \cos\theta_p, \phi)$$

JHEP 02 (2323) 189

Selection of $\Lambda_{b} \rightarrow pK^{-}\mu^{+}\mu^{-}$

- Hardware trigger from muons, subsequent selection based on kinematics of tracks from displaced vertex and particle identification
- Veto on peaking backgrounds from mis-ID of hadrons (i.e. $B^{0}_{s} \rightarrow K^{+}K^{-}\mu^{+}\mu^{-}$)
- sPlot procedure with pKµµ mass used as discriminator between signal and background
- Signal regions chosen to avoid J/ψ and ψ(2S) contamination

4/13

$\Lambda_{b} \rightarrow pK^{-}\mu^{+}\mu^{-}$ signal

- Branching fraction determined in all bins, angular moments in bins with \star
 - Around 1000 signal candidates in total

5/13

Ulrik Egede

Ulrik Egede

$\Lambda_{b} \rightarrow pK^{-}\mu^{+}\mu^{-}$ branching fraction

- The signal yields from fit are converted to differential branching fractions
 using efficiency map and normalisation channel
 - Units of 10⁻⁸ GeV⁻⁴c⁸
 - Correlated normalisation dominates over other systematics

LHCb Preliminary

m_{pK} q^2	[1.4359, 1.59]	[1.59, 1.75]	[1.75, 2.2]	[2.2, 5.41]
[0.1, 0.98] 5.22 ±	$\pm 1.21 \pm 0.43 \pm 0.98$	$8.22 \pm 1.69 \pm 0.38 \pm 1.54$	$7.24 \pm 0.92 \pm 0.52 \pm 1.36$	$0.46 \pm 0.13 \pm 0.14 \pm 0.09$
[1.1, 2.0] 3.05 ±	$\pm 1.45 \pm 0.51 \pm 0.57$	$6.27 \pm 1.71 \pm 0.40 \pm 1.18$	$4.24 \pm 0.78 \pm 0.16 \pm 0.80$	$0.16 \pm 0.09 \pm 0.02 \pm 0.03$
[2.0, 4.0] 4.56 ±	$\pm 0.90 \pm 0.26 \pm 0.86$	$4.50 \pm 0.86 \pm 0.21 \pm 0.84$	$3.44 \pm 0.47 \pm 0.08 \pm 0.64$	$0.12\pm 0.05\pm 0.02\pm 0.02$
[4.0, 6.0] 4.72 ±	$\pm 0.76 \pm 0.15 \pm 0.89$	$4.29 \pm 0.73 \pm 0.20 \pm 0.81$	$3.36 \pm 0.41 \pm 0.07 \pm 0.63$	$0.11 \pm 0.03 \pm 0.02 \pm 0.02$
[6.0, 8.0] 5.08 ±	$\pm 0.76 \pm 0.12 \pm 0.95$	$4.65 \pm 0.79 \pm 0.34 \pm 0.87$	$2.56 \pm 0.36 \pm 0.05 \pm 0.48$	$0.04 \pm 0.02 \pm 0.01 \pm 0.01$
[11, 12.5] 5.32 ±	$\pm 0.86 \pm 0.20 \pm 1.00$	$4.53 \pm 0.80 \pm 0.16 \pm 0.85$	$1.67 \pm 0.28 \pm 0.03 \pm 0.31$	—
[15.0, 17.5]	0.59 ± 0.19 =	$\pm 0.07 \pm 0.11$		_
Statistical	Systematic	Normalisation		

$\Lambda_{b} \rightarrow pK^{-}\mu^{+}\mu^{-}$ angular distributions

- Using sPlot weighted data and applying efficiency corrections gives pure weighted signal events $w(\phi)$ in the 3D angular distribution
- Moments determined from weighted sum over basis functions

Ulrik Egede

$\Lambda_{b} \rightarrow pK^{-}\mu^{+}\mu^{-}$ hadronic interference

- Distribution in $\cos(\theta_p)$ is flat if there is only a contribution from a single hadronic resonance
 - Strong asymmetry in $1.75 < m_{pK} < 2.20 \text{ GeV}/c^2$ bins

$\Lambda_{b} \rightarrow pK^{-}\mu^{+}\mu^{-}$ hadronic interference

- Distribution in $\cos(\theta_p)$ is flat if there is only a contribution from a single hadronic resonance
 - Strong asymmetry in $1.75 < m_{pK} < 2.20 \text{ GeV}/c^2$ bins
- Implies interference of resonances with different parity

resonance	$m_{\Lambda}\;[{\rm GeV}\!/c^2\;]$	$\Gamma_{\Lambda} \; [\text{GeV} / c^2 \;]$	$2J_{\Lambda}$	P_{Λ}	$\mathcal{B}(\Lambda \to N\overline{K})$
$\Lambda(1405)$	1.405	0.051	1	_	0.50
$\Lambda(1520)$	1.519	0.016	3	_	0.45
$\Lambda(1600)$	1.600	0.200	1	+	0.15 - 0.30
$\Lambda(1670)$	1.674	0.030	1	_	0.20 - 0.30
$\Lambda(1690)$	1.690	0.070	3	_	0.20 - 0.30
$\Lambda(1800)$	1.800	0.200	1	_	0.25 - 0.40
$\Lambda(1810)$	1.790	0.110	1	+	0.05 - 0.35
$\Lambda(1820)$	1.820	0.080	5	$^+$	0.55 - 0.65
$\Lambda(1890)$	1.890	0.120	3	$^+$	0.24 - 0.36
$\Lambda(2110)$	2.090	0.250	5	+	0.05 - 0.25

$$A_{\rm FB}^p = \frac{3}{2}\overline{K}_4 - \frac{\sqrt{21}}{8}\overline{K}_{10} + \frac{\sqrt{33}}{16}\overline{K}_{16}$$

Ulrik Egede

$\Lambda_{b} \rightarrow pK^{-}\mu^{+}\mu^{-}$ leptonic A_{FB}

- Just as for B mesons, the forward-backward asymmetry of the leptons is sensitive to interference between Wilson coefficients C₇ and C₉
- Due to convention, the sign is flipped relative to A_{FB} for mesons

$$A_{\rm FB}^{\mu} = \frac{3}{2}\overline{K}_2$$

10/13

Hadronic interference

 While A_{FB} is sensitive to New Physics, other observables are uniquely sensitive to the hadronic interference

Weak decays of beauty baryons at LHCb

11/13

Comparison of hadronic spectra

- The hadronic mass spectra can be compared between $\Lambda_b \rightarrow pK^-\gamma$, $\Lambda_b \rightarrow pK^-\mu^+\mu^-$, and $\Lambda_b \rightarrow J/\psi pK^-$
 - Differences qualitatively align to expectations from available phase space

Conclusion

- In the $\Lambda_b \rightarrow pK^{-}\mu^{+}\mu^{-}$ final state there is a very rich structure with information in both the hadronic and leptonic system
 - A basis of 46 orthogonal moments for an unpolarised sample
 - Some moments sensitive to NP and some to hadronic system
- Further work to provide a full angular analysis of the $\Lambda_b \rightarrow \Lambda(1520)\mu^+\mu^-$ final state as well as a full decomposition of hadronic spectra

13/13

Ulrik Egede

Orthogonal basis functions for moments

- Full list of eigenfunctions used for the moments
- *P^m*(cos θ) are associated Legendre polynomials

15/13

i	$f_i(ec\Omega)$	i	$f_i(ec\Omega)$
1	$\frac{1}{\sqrt{3}}P_0^0(\cos\theta_p)P_0^0(\cos\theta_\mu)$	24	$\frac{1}{2}\sqrt{\frac{7}{3}}P_3^1(\cos\theta_p)P_1^1(\cos\theta_\mu)\cos\phi$
2	$P_0^0(\cos\theta_p)P_1^0(\cos\theta_\mu)$	25	$\frac{1}{2}P_4^1(\cos\theta_p)P_2^1(\cos\theta_\mu)\cos\phi$
3	$\sqrt{\frac{5}{3}}P_0^0(\cos\theta_p)P_2^0(\cos\theta_\mu)$	26	$\frac{3}{2\sqrt{5}}P_4^1(\cos\theta_p)P_1^1(\cos\theta_\mu)\cos\phi$
4	$P_1^0(\cos\theta_p)P_0^0(\cos\theta_\mu)$	27	$\frac{1}{3}\sqrt{\frac{11}{6}}P_5^1(\cos\theta_p)P_2^1(\cos\theta_\mu)\cos\phi$
5	$\sqrt{3}P_1^0(\cos\theta_p)P_1^0(\cos\theta_\mu)$	28	$\sqrt{\frac{11}{30}}P_5^1(\cos\theta_p)P_1^1(\cos\theta_\mu)\cos\phi$
6	$\sqrt{5}P_1^0(\cos\theta_p)P_2^0(\cos\theta_\mu)$	29	$\sqrt{\frac{5}{6}}P_1^1(\cos\theta_p)P_2^1(\cos\theta_\mu)\sin\phi$
7	$\sqrt{\frac{5}{3}}P_2^0(\cos\theta_p)P_0^0(\cos\theta_\mu)$	30	$\sqrt{\frac{3}{2}}P_1^1(\cos\theta_p)P_1^1(\cos\theta_\mu)\sin\phi$
8	$\sqrt{5}P_2^0(\cos\theta_p)P_1^0(\cos\theta_\mu)$	31	$\frac{1}{3\sqrt{6}}P_2^1(\cos\theta_p)P_2^1(\cos\theta_\mu)\sin\phi$
9	$\frac{5}{\sqrt{3}}P_2^0(\cos\theta_p)P_2^0(\cos\theta_\mu)$	32	$\sqrt{\frac{5}{6}}P_2^1(\cos\theta_p)P_1^1(\cos\theta_\mu)\sin\phi$
10	$\sqrt{\frac{7}{3}}P_3^0(\cos\theta_p)P_0^0(\cos\theta_\mu)$	33	$\frac{1}{6}\sqrt{\frac{35}{3}}P_3^1(\cos\theta_p)P_2^1(\cos\theta_\mu)\sin\phi$
11	$\sqrt{7}P_3^0(\cos\theta_p)P_1^0(\cos\theta_\mu)$	34	$\frac{1}{2}\sqrt{\frac{7}{3}}P_3^1(\cos\theta_p)P_1^1(\cos\theta_\mu)\sin\phi$
12	$\sqrt{\frac{35}{3}}P_3^0(\cos\theta_p)P_2^0(\cos\theta_\mu)$	35	$\frac{1}{2}P_4^1(\cos\theta_p)P_2^1(\cos\theta_\mu)\sin\phi$
13	$\sqrt{3}P_4^0(\cos\theta_p)P_0^0(\cos\theta_\mu)$	36	$\frac{3}{2\sqrt{5}}P_4^1(\cos\theta_p)P_1^1(\cos\theta_\mu)\sin\phi$
14	$3P_4^0(\cos\theta_p)P_1^0(\cos\theta_\mu)$	37	$\frac{1}{3}\sqrt{\frac{11}{6}}P_5^1(\cos\theta_p)P_2^1(\cos\theta_\mu)\sin\phi$
15	$\sqrt{15}P_4^0(\cos\theta_p)P_2^0(\cos\theta_\mu)$	38	$\sqrt{\frac{11}{30}}P_5^1(\cos\theta_p)P_1^1(\cos\theta_\mu)\sin\phi$
16	$\sqrt{\frac{11}{3}}P_5^0(\cos\theta_p)P_0^0(\cos\theta_\mu)$	39	$\frac{5}{12\sqrt{6}}P_2^2(\cos\theta_p)P_2^2(\cos\theta_\mu)\cos 2\phi$
17	$\sqrt{11}P_5^0(\cos\theta_p)P_1^0(\cos\theta_\mu)$	40	$\frac{1}{12}\sqrt{\frac{7}{6}}P_3^2(\cos\theta_p)P_2^2(\cos\theta_\mu)\cos 2\phi$
18	$\sqrt{\frac{55}{3}}P_5^0(\cos\theta_p)P_2^0(\cos\theta_\mu)$	41	$\frac{1}{12\sqrt{2}}P_4^2(\cos\theta_p)P_2^2(\cos\theta_\mu)\cos 2\phi$
19	$\sqrt{\frac{5}{6}}P_1^1(\cos\theta_p)P_2^1(\cos\theta_\mu)\cos\phi$	42	$\frac{1}{12}\sqrt{\frac{11}{42}}P_5^2(\cos\theta_p)P_2^2(\cos\theta_\mu)\cos 2\phi$
20	$\sqrt{\frac{3}{2}}P_1^1(\cos\theta_p)P_1^1(\cos\theta_\mu)\cos\phi$	43	$\frac{5}{12\sqrt{6}}P_2^2(\cos\theta_p)P_2^2(\cos\theta_\mu)\sin 2\phi$
21	$\frac{5}{3\sqrt{6}}P_2^1(\cos\theta_p)P_2^1(\cos\theta_\mu)\cos\phi$	44	$\frac{1}{12}\sqrt{\frac{7}{6}}P_3^2(\cos\theta_p)P_2^2(\cos\theta_\mu)\sin 2\phi$
22	$\sqrt{\frac{5}{6}} P_2^1(\cos\theta_p) P_1^1(\cos\theta_\mu) \cos\phi$	45	$\frac{1}{12\sqrt{2}}P_4^2(\cos\theta_p)P_2^2(\cos\theta_\mu)\sin 2\phi$
23	$\frac{1}{6}\sqrt{\frac{35}{3}}P_3^1(\cos\theta_p)P_2^1(\cos\theta_\mu)\cos\phi$	46	$\frac{1}{12}\sqrt{\frac{11}{42}}P_5^2(\cos\theta_p)P_2^2(\cos\theta_\mu)\sin 2\phi$

Ulrik Egede

$\Lambda_{\rm b} \rightarrow \Lambda(1520)\mu^+\mu^-$

• As all other electroweak penguin analyses, the normalisation of the branching fraction is done through the corresponding J/ψ decay mode

Ulrik Egede

$\Lambda_{\rm b} \rightarrow \Lambda(1520)\mu^+\mu^-$

- Fits of *pK*µµ mass distribution made in regions of q² outside the J/ψ and ψ(2S) resonances
- Very clear signal in all regions
- sWeights are then derived from this distribution to get the signal only pK mass distribution

$\Lambda_{\rm b} \rightarrow \Lambda(1520)\mu^{+}\mu^{-}$

- The Λ(1520), Λ(1405), Λ(1600), and Λ(1800) resonances all included in fit
- Relativistic Breit-Wigner
 lineshapes used
- Mass resolution so good that it only matters for Λ(1520)
- Uncertainty in resonance parameters and interference treated as systematics

Ulrik Egede

$\Lambda_{\rm b} \rightarrow \Lambda(1520)\mu^{+}\mu^{-}$

- Fits in all regions show:
 - Clear Λ(1520) peak
 - Not as isolated as the K* in B^0 →K*⁰µ⁺µ⁻
 - Still promising for angular analysis

$\Lambda_{\rm b} \rightarrow \Lambda(1520)\mu^{+}\mu^{-}$

- Branching fraction measurement at the end is dominated by statistical uncertainty
- Comparison to theoretical predictions are all over the place
- Some consolidation required on theory side to be conclusive

