Search for Very Rare Decays at LHCb

Giulia Frau on behalf of the LHCb Collaboration ICHEP 2024 | 18-24 July, Prague

HH

HH

ne University of Manchester

What do we mean by "very rare decays"?

- Strongly suppressed or forbidden decays in the SM
- Include
 - FCNC processes not allowed at tree level (quantum loop diagrams, $\mathcal{B} < \mathcal{O}(10^{-7})$)
 - LFV processes ($\mathcal{B} < 10^{-40}$ in SM + ν oscillations)
- Important tests of SM
 - Sensitive to new physics contribution (Z' gauge boson, LQ, non-SM Higgs boson...)
- Mainly involving leptonic final states

Very rare decays at LHCb - Giulia Frau

In this talk

- Latest (2024) LHCb results on very rare decays
- > (Semi)leptonic decays of *b* mesons
 - \succ B⁺_c → π⁺μ⁺μ⁻ [Eur. Phys. J. C 84 (2024) 468] **NEW**
 - > $B_{(s)}^{*0} \rightarrow \mu^+ \mu^-$ in $B_c^+ \rightarrow \pi^+ \mu^+ \mu^-$ decays [LHCb-CONF-2024-003] NEW
 - > $B \to D \mu^+ \mu^-$ [JHEP 02 (2024) 032]
- More at LHCb
 - Dedicated <u>talk</u> on LFV b decays by Tommaso Fulghesu

NEW

- Dedicated <u>talk</u> on **radiative** *b*-hadron decays by Aniol Lobo Salvia ($B_s^0 \rightarrow \mu^+ \mu^- \gamma [\underline{JHEP \ 07 (2024) \ 101}]$)
- Dedicated <u>talk</u> on **charm (very) rare decays** by Francesco Dettori

B_c	$^+_{\pi} \rightarrow \pi^+ \mu^+ \mu^-$		New	Eur. Phys. J. C 84 (2024) 468		
*	B_c^+ mesons made of hea	viest quarks forming	g hadrons in the SM	Annihilation + γ/Z radiation		
*	Can provide important insights into the understanting of QCD					
*	No theory prediction so far γ/Z					
	May receive contribution from resonant $B_c^+ \to B_{(s)}^{*0}\pi^+$ decays (later in the talk) \bar{b}					
•	First search for non resor	hant $B_c^+ o \pi^+ \mu^+ \mu^-$	decays, using Run 1+2 dataset (9 f	^c b ⁻¹)		
•	Performed in intervals of	$q^2 = m^2(\mu^+\mu^-)$				
	Decay mode	Interval	• $B_c^+ \rightarrow J/\psi \pi^+$ used	d as a control and normalisation channel		
	$B_c^+ \rightarrow \pi^+ \mu^+ \mu^-$ (low) (central)	$0.1 < q^{2} < 1.1 \text{ GeV}^{2}$ $1.1 < q^{2} < 8.0 \text{ GeV}^{2}$ $11.0 < q^{2} < 12.5 \text{ GeV}$	$R_{\pi^{+}\mu^{+}\mu^{-}/J/2}$	$\mathcal{H}_{\psi\pi^+} \equiv \frac{\mathcal{B}(B_c^+ \to \pi^+ \mu^+ \mu^-)}{\mathcal{B}(B_c^+ \to I/\psi\pi^+)}$		

$$R_{\pi^+\mu^+\mu^-/J/\psi\pi^+} \equiv \frac{\mathcal{B}(B_c^+ \to \pi^+\mu^-)}{\mathcal{B}(B_c^+ \to J/\psi^-)}$$

- BDT to suppress combinatorial background (bkg)
- PID requirements to suppress misID bkg

 $11.0 < q^2 < 12.5 \,\mathrm{GeV^2}$

 $15.0 < q^2 < 35.0 \,\mathrm{GeV}^2$

 $|m(\mu^+\mu^-) - m_{J/\psi}| < 50 \,\text{MeV}$

 $|m(\mu^+\mu^-) - m_{\psi(2S)}| < 50 \,\mathrm{MeV}$

(intermediate)

(high)

 $B_c^+\!\to\,J/\psi\,\pi^+$

 $B_c^+\!\to\psi(2S)\,\pi^+$

Very rare decays at LHCb - Giulia Frau

18/07/24

5

18/07/24

Very rare decays at LHCb - Giulia Frau

- $B_{(s)}^{*0} \rightarrow \mu^+ \mu^-$ in $B_c^+ \rightarrow \pi^+ \mu^+ \mu^-$ decays New
 - Not affected by chirality suppression unlike $B_{(s)}^0$ decays
 - Still suppressed by electromagnetic nature of the decay
 - ♦ Accurate SM prediction $\mathcal{B} \sim 10^{-11}$ [PRL 116 (2016) 14, 141801]
 - First search for $B^{*0} \rightarrow \mu^+ \mu^-$ and $B_s^{*0} \rightarrow \mu^+ \mu^-$ decays
 - Using Run 1+2 data (9 fb^{-1})
 - $B_{(s)}^{*0}$ from $B_c^+ \rightarrow B_{(s)}^{*0}(\mu^+\mu^-)\pi^+$ decays to limit bkg
 - Exploit displaced B_c^+ vertex (as for $D^{*0} \rightarrow \mu^+\mu^-$ [EPJ C83 (2023) 666])
 - Similar analysis as for $B_c^+ \rightarrow \pi^+ \mu^+ \mu^-$
 - Simultaneous ML fit to $m(\mu^+\mu^-)$ and $m(\pi^+\mu^+\mu^-)$

$$\mathcal{R}_{B^{*0}(\mu^{+}\mu^{-})\pi^{+}/J/\psi\pi^{+}} < 3.8 \ (5.2) \times 10^{-5} \text{ at } 90\% (95\%) \text{ Cl}$$

$$\mathcal{R}_{B^{*0}_{S}(\mu^{+}\mu^{-})\pi^{+}/J/\psi\pi^{+}} < 5.0 \ (6.3) \times 10^{-5} \text{ at } 90\% (95\%) \text{ CL}$$

LHCb-CONF-2024-003

LHCb-PAPER-2024-026

$B \rightarrow D \mu^+ \mu^-$

- $B^0 \rightarrow \overline{D}{}^0 \mu^+ \mu^-$ (a), $B^0 \rightarrow \overline{D}{}^0 J/\psi$ (d)
- $B_s^0 \to \overline{D}{}^0 \mu^+ \mu^-$ (a), $B_s^0 \to \overline{D}{}^0 J/\psi$ (d)
- $B^+ \rightarrow D_s^+ \mu^+ \mu^-$ (b), $B^+ \rightarrow D_s^+ J/\psi$ (e)
- $B_c^+ \to D_s^+ \mu^+ \mu^-$ (b,c), $B_c^+ \to D_s^+ J/\psi$ (e,f)
- Dominated by different modes of interaction
- Search on Run 1+2 dataset (9 fb⁻¹)
 - $q^2(\mu^+\mu^-) < 8 \text{ GeV/c}^2$ to exclude J/ψ region
 - $B^0_{(s)}(B^+_{(c)})$ modes normalised to $B^0 \to J/\psi K^{*0}(B^+ \to J/\psi K^+)$
 - $B_c^+ \to D_s^+ \mu^+ \mu^-$ normalised to $B_c^+ \to D_s^+ J/\psi$
 - PID selection + BDT against bkg

JHEP 02 (2024) 032

 $\overline{D}{}^0 \rightarrow K^+ \pi^-$

 $- D_s^+ \to K^+ K^- \pi^+$

$B \rightarrow D \ \mu^+ \mu^-$

- ML fit to inv. mass with modelling of residual misID + part. reco. bkg
- No excess of signal events observed in all modes, except for...
- World's best upper limits set at 95% CL

 $\mathcal{B}(B^{0} \to \overline{D}^{0} \mu^{+} \mu^{-}) < 5.1 \times 10^{-8}$ $\mathcal{B}(B^{+} \to D_{s}^{+} \mu^{+} \mu^{-}) < 3.2 \times 10^{-8}$ $\mathcal{B}(B_{s}^{0} \to \overline{D}^{0} \mu^{+} \mu^{-}) < 1.6 \times 10^{-7}$ $f_{c}/f_{\mu} \cdot \mathcal{B}(B_{c}^{+} \to D_{s}^{+} \mu^{+} \mu^{-}) < 9.6 \times 10^{-8}$

 $\mathcal{B}(B^{0} \to \overline{D}^{0}J/\psi) < 1.1 \times 10^{-6}$ $\mathcal{B}(B^{+} \to D_{s}^{+}J/\psi) < 3.5 \times 10^{-7}$ $\mathcal{B}(B_{s}^{0} \to \overline{D}^{0}J/\psi) < 1.5 \times 10^{-6}$

JHEP 02 (2024) 032

• Most precise measurement $\rightarrow f_c/f_u \cdot \mathcal{B}(B_c^+ \rightarrow D_s^+ J/\psi) = (1.63 \pm 0.15 \text{ (stat)} \pm 0.13 \text{ (syst)}) \times 10^{-5}$

•
$$\mathcal{R}_{D_{S}^{*+}/D_{S}^{+}} = \frac{\mathcal{B}(B_{c}^{+} \to D_{S}^{*+}J/\psi)}{\mathcal{B}(B_{c}^{+} \to D_{S}^{+}J/\psi)} = 1.91 \pm 0.20(\text{stat}) \pm 0.07(\text{syst})$$

• $\Gamma_{\pm\pm}/\Gamma_{\text{tot}} = \frac{N_{A^{\pm\pm}}}{N_{A^{\pm\pm}} + N_{A^{00}}} = 0.50 \pm 0.11(\text{stat}) \pm 0.05(\text{syst})$

Superseding previous LHCb results [Phys. Rev. D 87, 112012]

Outlook and conclusions

LHCb ГНСр

- > (Very) rare decays as fundamental tests of SM
- > Can provide important constraints to NP models
- > LHCb pushing limits towards unprecedent levels
- Many other published or ongoing analyses
 - $\succ \tau \rightarrow \mu\mu\mu$ (under internal review)
 - $\succ au
 ightarrow \phi \mu$ (first attempt at a hadron collider)

Integrated Recorded Luminosity (1/fb) TeV): 2.19 /fb 2.51 TeV): 1.71 /fb + 0.10 /fb eV): 1.67 /fb 3.7 TeV): 0.33 /fb 2012 (4.0 TeV): 2.08 /fb 3.3 2011 (3.5 TeV): 1.11 /fb 2010 (3.5 TeV): 0.04 /fb 2.8 2.3 1.9 1.4 0.9 0.5

May

Mar

2024 (6.8 TeV): 2.80 /fb

LHCb Integrated Recorded Luminosity in pp by years 2010-2024

Nov

- Run 3 data taking happening now
 - > Upgraded detector and trigger system will enhance signal acceptance
 - ➢ 5 times more luminosity expected at the end of Run 3 + 4

Sep

Backup

The LHCb detector in Run 1-2

- Single arm forward spectrometer (2 < η < 5)</p>
 located at the LHC
- Excellent particle identification from RICH(1,2), ECAL and Muon Stations
 - $\epsilon(e \rightarrow e) \sim 90\%$ and $\epsilon(e \rightarrow h) \sim 5\%$
 - $\epsilon(K \to K) \sim 95 97\%$ and $\epsilon(\pi \to K) \sim 5\%$
 - $\epsilon(\mu \rightarrow \mu) \sim 97\%$ and $\epsilon(\pi \rightarrow \mu) \sim 1 3\%$

Good tracking system

- $\Delta p/p = 0.5\%$ at low momentum
- Impact parameter resolution $(15 + 29 / p_T) \mu m$

	Run 1 (2011,2012)		Run 2 (2015-2018)
\sqrt{s}	7 TeV	8 TeV	13 TeV
∫ L dt	1.0 fb-1	2.0 fb ⁻¹	~6 fb ⁻¹

[2008 JINST 3 S08005, arXiv:1306.0249]

 $B_c^+ \to \pi^+ \mu^+ \mu^-$

Eur. Phys. J. C 84 (2024) 468

• Fit to invariant mass in the different q^2 intervals

Upper limits on the normalised differential branching fraction

Final fit in $B \rightarrow D \ \mu^+\mu^-$ analysis

Very rare decays at LHCb - Giulia Frau

LHCb ГНСр

JHEP 02 (2024) 032

$B^0_s \to \mu^+ \mu^- \gamma$

*

- Sensitive to a wider set of operators compared to $B_s^0 \rightarrow \mu^+ \mu^-$, depending on $q^2(\mu^+ \mu^-)$
- Final state γ lifting chirality suppression compensating for QED vertex

👍 enhanced BF

- F local form factors describing $B_s^0 \rightarrow \gamma$ transition
- First search with full final state reconstruction and first search at low q^2
- Performed on Run 2 data (5.4 fb⁻¹) in q² ranges
- $B_s^0 \rightarrow \phi (K^+K^-)\gamma$ used as a control channel in data/MC comparison
- $B_s^0 \rightarrow J/\psi(\mu^+\mu^-)\eta(\gamma\gamma)$ as a normalisation channel
- PID requirements on muons against misID bkg
- NN classifier to isolate photon clusters + "neutral" classifier against $\pi^0 \rightarrow \gamma \gamma$
- MLP classifier against combinatorial bkg

JHEP07(2024)101

$B^0_s \to \mu^+ \mu^- \gamma$

- ML fit to $\mu^+\mu^-\gamma$ inv. mass.
 - Modelling of comb. + part.reco + peaking bkg
- No excess of signal events found
- Upper limits set at 95% using CLs method

B at 95%	$m(\mu^+\mu^-)$ range [GeV/ c^2]	
4.2×10^{-8}	$\left[2m_{\mu} ight,1.70 ight]$	
7.7×10^{-8}	[1.70, 2.88]	
4.2×10^{-8}	$[3.92, m_{B_S^0}]$	
$3.4 \times 10^{-8(*)}$	$\left[2m_{\mu}, 1.70 ight]$ GeV/ c^2 + ϕ veto	
2.8×10^{-8}	whole	

^(*) complementary study with exclusion of $m(\mu^+\mu^-) \in [989.6, 1073.4] \text{MeV}/c^2$ as in [JHEP12(2021)078]

The LHCb detector in Run 3-4

Very rare decays at LHCb - Giulia Frau