

SEARCH FOR PHYSICS BEYOND THE STANDARD MODEL AT NA62

RENATO FIORENZA

on behalf of the NA62 collaboration

renato.fiorenza@cern.ch 18/07/2024

SSM

Scuola Superiore Meridionale

THE NA62 EXPERIMENT

- High-precision kaon experiment
- Technique:
 - Fixed target
 - Decay-in-flight
- Broad physics program:
 - Measurement of BR($K^+ \rightarrow \pi^+ \nu \overline{\nu}$)
 - Searches for LFV / LNV
 - Precision measurements A.T. Akmete, next talk
 - Exotic searches S. Letzki, 20/07
- Timeline:
 - 2016 2018: First data taking run (2.2 × 10¹⁸ protons on target)
 - 2021 LS3 (ongoing): Second data taking run, improved detector

this talk

THE NA62 DETECTOR

JINST 12 (2017) P05025

 $K^+ \rightarrow \pi^+ \nu \overline{\nu}$

RUN1 RESULTS 2021 – 2022 DATA ANALYSIS STATUS

$K^+ \rightarrow \pi^+ \nu \overline{\nu}$:THEORY

- FCNC s \rightarrow d, high CKM suppression
- Theoretically clean, dominated by short distance
- Hadronic form factor extracted from $K_{\ell 3}$
- Uncertainty largely from CKM parameters

 $BR(K^+ \rightarrow \pi^+ \nu \overline{\nu})_{SM} = (8.4 \pm 1.0) \times 10^{-11}$

|HEP || (2015) 033

$K^+ \rightarrow \pi^+ \nu \overline{\nu}$: ANALYSIS

Performances

- Kinematic suppression O(10⁴)
- Muon suppression O(10⁷)
- π⁰ suppression O(10⁷)
- Timing between sub-detectors O(100 ps)

Selection

- K⁺, π⁺ track reconstruction
- Track matching, vertex reconstruction
- π^+ identification, μ^+ rejection
- Multi-track rejection, photon veto
- Kinematics (m_{miss}^2, p_{π})

<u>Analysis</u>

- Momentum range: $15 < p_{\pi} < 45 \text{ GeV/c}$
- Signal regions blinded during the analysis
- Data-driven background estimate
- Categories depending on hardware and momentum

$K^+ \rightarrow \pi^+ \nu \overline{\nu}$: RUN1 RESULTS

- Single Event Sensitivity: $(0.839 \pm 0.053_{syst}) \times 10^{-11}$
- Expected SM signal events: |0.0| ± 0.42_{syst} ± 1.19_{ext}
- Expected background events: 7.03^{+1.05}_{-0.82}
- Observed events: 20
- Significance: 3.4σ

ICHEP 2024

2021 – 2022 HARDWARE IMPROVEMENTS

ICHEP 2024

2021 – 2022 DATA: SINGLE EVENT SENSITIVITY

$$\left(N_{\pi\nu\nu}^{SM,exp} = \frac{BR(\pi\nu\nu)_{SM}}{SES} = \frac{BR(\pi\nu\nu)_{SM}}{BR(\pi\pi)} \frac{A_{\pi\nu\nu}}{A_{\pi\pi}} (N_{\pi\pi} \times D_0) \varepsilon_{trig} \varepsilon_{RV} \right)$$

	2021 ($t > 2$ s)	2022	21+22	2018	
$\begin{array}{c c} (N_{\pi\pi}D_0)/400 \ [\times 10^7] \\ \varepsilon_{trig} \end{array}$	$\begin{array}{c} 3.713 \\ (83.5 \pm 1.3)\% \end{array}$	$\frac{16.374}{(86.3 \pm 1.5)\%}$	$\frac{20.087}{(85.8 \pm 1.4)\%}$	$(89 \pm 5) \%$	 Improvements in LKr
ε_{RV}	$(63.0 \pm 0.5)\%$	$(63.8 \pm 0.5)\%$ 13 525 ± 0.005) %	$(63.6 \pm 0.5)\%$	$(66 \pm 1)\%$ (11.77 ± 0.18)%	"Bayesian"
$\begin{array}{c} A_{\pi\pi} \\ A_{\pi\nu\bar{\nu}} \end{array}$		$(7.7 \pm 0.2)\%$	0	$\begin{array}{c} (11.77 \pm 0.18) \ \% \\ (6.4 \pm 0.6) \ \% \end{array}$	K ⁺ -π ⁺ matching ■ Increased signal yield
$\begin{array}{c} \mathcal{B}_{SES}[\times 10^{-11}] \\ N_{\pi u \bar{\nu}}^{\text{SM,exp}} \end{array}$	4.68 ± 0.17 1.80 ± 0.06	$1.01 \pm 0.03 \\ 8.28 \pm 0.24$	$0.83 \pm 0.03 \\ 10.07 \pm 0.31$		 More precise ε_{trig} and ε_{PV} evaluation
$N_{\pi\nu\bar{\nu}}^{\rm SM,exp}$ per burst	1.7×10^{-5}	2.5×10^{-5}	2.3×10^{-5}	1.7×10^{-5}	

• $K^+ \rightarrow \pi^+ \pi^0$ normalization channel

ICHEP 2024

Random Veto (RV): efficiency loss due to beam activity

18/07/2024

7/11

2021 – 2022 DATA: BACKGROUNDS

Upstream background

(accidental K⁺- π ⁺ matching): fully data driven approach

Checks ongoing about scaling of backgrounds with intensity

LNV / LFV SEARCHES

RUN1 RESULTS

FIRST SEARCH FOR $K^+ \rightarrow \pi^0 \pi \mu e$

9/11

OTHER RESULTS

	Previous UL PDG 2019	NA62 UL at 90% CL	
$K^+ \to \pi^- \mu^+ e^+$	$BR < 5.0 \times 10^{-10}$	BR < 4.2 × 10 ⁻¹¹	PRL 127 (2021) 131802
$K^+ \to \pi^+ \mu^- e^+$	$BR < 5.2 \times 10^{-10}$	BR < 6.6 × 10 ⁻¹¹	PRL 127 (2021) 131802
$\pi^0 \to \mu^- e^+$	BR < 3.4 × 10 ⁻⁹	$BR < 3.2 \times 10^{-10}$	PRL 127 (2021) 131802
$K^+ \to \pi^- \mu^+ \mu^+$	BR < 8.6 × 10 ⁻¹¹	BR < 4.2 × 10 ⁻¹¹ (25% of dataset)	PLB 797 (2019) 134794
$K^+ \rightarrow \pi^- e^+ e^+$	$BR < 6.4 \times 10^{-10}$	BR < 5.3 × 10 ⁻¹¹	PLB 830 (2022) 137172
$K^+ \rightarrow \pi^- \pi^0 e^+ e^+$	N/A	$BR < 8.5 \times 10^{-10}$	PLB 830 (2022) 137172
$K^+ \rightarrow \mu^- \nu e^+ e^+$	N/A	BR < 8.1 × 10 ⁻¹¹	PLB 838 (2023) 137679

NA62 can improve ULs on LFV / LNV kaon decays by more than one order of magnitude

CONCLUSION

CONCLUSION

- NA62 is collecting data from 2016 until at least 2025
 - Largest multi-purpose K⁺ decay sample ever O(10¹³)
 - Last K⁺ decay experiment in the foreseeable future
- First observation of the ultra rare $K^+ \rightarrow \pi^+ \nu \overline{\nu}$ decay (3.4 σ)
 - Run1 result: BR($K^+ \rightarrow \pi^+ \nu \overline{\nu}$) = (10.6 $_{-3.8}^{+4.0}|_{stat} \pm 0.9_{syst}$) × 10⁻¹¹
 - Run2 result is coming soon! Expected signal to be doubled
- 10 LFV / LNV K⁺ decay modes addressed by NA62 so far

CONCLUSION

- NA62 is collecting data from 2016 until at least 2025
 - Largest multi-purpose K⁺ decay sample ever O(10¹³)
 - Last K⁺ decay experiment in the foreseeable future
- First observation of the ultra rare $K^+ \rightarrow \pi^+ \nu \overline{\nu}$ decay (3.4 σ)
 - Run1 result: BR($K^+ \rightarrow \pi^+ \nu \overline{\nu}$) = (10.6 $_{-3.8}^{+4.0}|_{stat} \pm 0.9_{syst}$) × 10⁻¹¹
 - Run2 result is coming soon! Expected signal to be doubled
- 10 LFV / LNV K⁺ decay modes addressed by NA62 so far

THANK YOU!

18/07/2024

MOST RECENT SM PREDICTIONS FOR $K \rightarrow \pi \nu \overline{\nu}$

$$BR(K^{+} \to \pi^{+} \nu \overline{\nu}) = (8.60 \pm 0.42) \times 10^{-11}$$
$$BR(K_{L} \to \pi^{0} \nu \overline{\nu}) = (2.94 \pm 0.15) \times 10^{-11}$$

Buras and Venturini [Eur. Phys. J. C 82 (2022) 615] [arXiv:2109.11032]

$$BR(K^{+} \to \pi^{+} \nu \overline{\nu}) = (7.73 \pm 0.61) \times 10^{-1}$$
$$BR(K_{L} \to \pi^{0} \nu \overline{\nu}) = (2.59 \pm 0.29) \times 10^{-1}$$

Brod, Gorbahn, Stamou [PoS BEAUTY2020 (2021) 056]

 $BR(K^+ \to \pi^+ \nu \overline{\nu}) = (7.86 \pm 0.61) \times 10^{-11}$ $BR(K_L \to \pi^0 \nu \overline{\nu}) = (2.68 \pm 0.30) \times 10^{-11}$

D'Ambrosio, Iyer, Mahmoudi, Neshatpour [JHEP 09 (2022) 148]

SINGLE EVENT SENSITIVITY, 2018 DATA

	Subset S1 *	Subset S2 $*$
$N_{\pi\pi} \times 10^{-7}$	3.14	11.6
$A_{\pi\pi} \times 10^2$	7.62 ± 0.77	11.77 ± 1.18
$A_{\pi\nu\bar{\nu}} \times 10^2$	3.95 ± 0.40	6.37 ± 0.64
$\epsilon_{ m trig}^{ m PNN}$	0.89 ± 0.05	0.89 ± 0.05
$\epsilon_{ m RV}$	0.66 ± 0.01	0.66 ± 0.01
$SES \times 10^{10}$	0.54 ± 0.04	0.14 ± 0.01
$N^{ m exp}_{\pi uar u}$	$1.56 \pm 0.10 \pm 0.19_{\mathrm{ext}}$	$6.02 \pm 0.39 \pm 0.72_{\rm ext}$

* different hardware configuration

BACKGROUND FROM K⁺ DECAYS

Number of events in
$$\pi^{+} \pi^{0}$$

region after $\pi \nu \nu$ selection $\bigwedge^{exp}(SR) = N(\pi^{+}\pi^{0}) f_{kin}(SR)$ $\bigvee^{K^{+}} \rightarrow \pi^{+} \pi^{0}$ events
in signal regionFraction of $\pi^{+} \pi^{0}$ in signal region,
measured on control data

- $K^+ \to \mu^+ \nu_{\mu}$ and $K^+ \to \pi^+ \pi^- \pi^-$ backgrounds: similar procedure
- $K^+ \rightarrow \pi^+ \pi^- e^+ \nu_e$ evaluated with MC simulations
- Validation with control regions

UPSTREAM BACKGROUND

- Pions produced upstream of the fiducial volume
 - Early kaon decays
 - Interaction of beam particles with beam spectrometer material
- Fake association of detected pions to accidental particles
- Collimator installed in June 2018
- VetoCounter & ANTI0 in Run2
- Geometrical cuts & BDT cut on backtracked pion position
- Kaon-pion association effective
- Data-driven background estimation

EXPECTED BACKGROUND SUMMARY, 2018 DATA

Background	Subset S1	Subset S2
$\pi^+\pi^0$	0.23 ± 0.02	0.52 ± 0.05
$\mu^+ u$	0.19 ± 0.06	0.45 ± 0.06
$\pi^+\pi^-e^+\nu$	0.10 ± 0.03	0.41 ± 0.10
$\pi^+\pi^+\pi^-$	0.05 ± 0.02	0.17 ± 0.08
$\pi^+\gamma\gamma$	< 0.01	< 0.01
$\pi^0 l^+ \nu$	< 0.001	< 0.001
Upstream	$0.54\substack{+0.39 \\ -0.21}$	$2.76\substack{+0.90 \\ -0.70}$
Total	$1.11\substack{+0.40\\-0.22}$	$4.31_{-0.72}^{+0.91}$

 π^+ momentum [GeV/c]