

New Results on rare Kaon and Pion Decays @NA62

Atakan Tuğberk Akmete | JGU Mainz

atakan.tugberk.akmete@cern.ch

On behalf of the NA62 collaboration

42nd International Conference on High Energy Physics

Prague, 18.07.2024

Federal Ministry of Education and Research

The NA62 Experiment at CERN: The K⁺ factory

- Fixed-target experiment with 400 GeV/c protons from SPS
- Physics runs:
 - 2016, 2017 and 2018 (Run 1): $N_{K^+} \approx 6 \ x \ 10^{12}$
 - Run 2 started in 2021 and approved until CERN LS3
- Broad physics program:
 - Measurement of $\mathcal{B}(K^+ \rightarrow \pi^+ \nu \bar{\nu})$
 - Forbidden kaon decays (LFV/LNV)
 - Exotic particles searches
 - Precision measurements of rare decays (this talk):
 - $\pi^0 \rightarrow e^+ e^-$ (NEW preliminary)
 - $K^+ \to \pi^+ \gamma \gamma$ [PLB 850 (2024) 138513]

~300 collaborators from ~30 institutes

From the NA62 data collected in 2017-2018

The NA62 Beamline and Detector

 $\pi^0 \rightarrow e^+ e^-$

 $\pi^0 \rightarrow e^+e^-$: Overview

- Radiative corrections play an important role for comparison with SM predictions
 - Lowest-order via a two-photon intermediate state
- Previous best measurement by KTeV [Phys.Rev.D 75 (2007) 012004]:

 $\mathcal{B}_{KTeV}(\pi^0 \to e^+e^-(\gamma), x > 0.95) = (6.44 \pm 0.25 \pm 0.22) \times 10^{-8}$ with $x = m_{ee}^2/m_{\pi^0}^2$

- For x > 0.95, <u>Dalitz decays</u> are ~**3.3%** of $\mathcal{B}(\pi^0 \rightarrow e^+e^-(\gamma))$
- Predictions [JHEP 10 (2011) 122] and [Eur.Phys.J.C 74 (2014) 8, 3010]:

KTeV, PRD 75 (2007)	6.84(35)
Knecht et al., PRL 83 (1999) Dorokhov and Ivanov, PRD 75 (2007)	6.2(3) 6.23(9)
Husek and Leupold, EPJC 75 (2015)	6.12(6)
Hoterichter et al., PRL 128 (2022)	6.25(3)

 $\mathcal{B}(\pi^0
ightarrow e^+e^-, ext{ no-rad}) imes 10^8$

> NA62 has a great opportunity to tag $O(10^{10}) \pi^0$ decays via $K^+ \rightarrow \pi^+ \pi^0$ and both K^+ and π^+ reconstructed

Data sample and trigger

- Signal $K^+ \to \pi^+ \pi^0$; $\pi^0 \to e^+ e^- \equiv K^+ \to \pi^+ \pi^0_{ee}$ and normalization $K^+ \to \pi^+ e^+ e^-$
- Same decay topology \rightarrow <u>systematics cancel</u>

18.07.24

- Background-free region for normalization: $m_{ee} \in (140, 360)$ MeV/c²
- $N^{obs} = 12160$ and $N_{K^+} = (8.62 \pm 0.08_{stat} \pm 0.26_{ext}) \times 10^{11}$

6/15

Signal
$$K^+ \rightarrow \pi^+ \pi^0_{ee}$$

• Fit region for signal extraction:

 $m_{ee} \in (130, 140) \ MeV/c^2$

- Backgrounds sources:
 - $K^+ \rightarrow \pi^+ e^+ e^-$: irreducible, flat in signal region
 - $K^+
 ightarrow \pi^+ \pi^0$, $\pi^0
 ightarrow \gamma e^+ e^- \equiv K^+
 ightarrow \pi^+ \pi_D^0$
 - $K^+
 ightarrow \pi^+ \pi^0$, $\pi^0
 ightarrow e^+ e^- e^+ e^- \equiv K^+
 ightarrow \pi^+ \pi^0_{DD}$
- Maximum likelihood fit of the m_{ee} signal:
 - Fit result: 597 ± 29 signal events
 - $\chi^2/ndf = 25.3/19$, p-value: 0.152

 $\mathcal{B}(\pi^0 \rightarrow e^+e^-(\gamma), x > 0.95) = (5.86 \pm 0.30_{stat}) \times 10^{-8}$

Preliminary Results and Uncertainties

• The results are <u>compatible</u> with the previous measurement and the theoretical predictions:

 $\mathcal{B}(\pi^0 \to e^+e^-(\gamma), x > 0.95) = (5.86 \pm 0.30_{stat} \pm 0.11_{syst.} \pm 0.19_{ext.}) \times 10^{-8}$

 $= (5.86 \pm 0.37) \times 10^{-8}$

	$\delta \mathcal{B}[10^{-8}]$	δ <i>B</i> / <i>B</i> [%]
Statistical uncertainty	0.30	5.1
Trigger efficiency	0.07	1.2
Radiative corrections for $\pi^0 ightarrow e^+e^-$	0.05	0.9
Background	0.04	0.7
Reconstruction and particle-ID	0.04	0.7
Beam simulation	0.03	0.5
Total systematic uncertainty	0.11	1.9
Total external uncertainty	0.19	3.2

 $K^+ \rightarrow \pi^+ \gamma \gamma$

$$K^+ \rightarrow \pi^+ \gamma \gamma$$
: Overview

- Crucial test of Chiral Perturbation Theory (ChPT) describing low-energy QCD processes
 - ChPT at the leading order $O(p^4)$ including next-to-leading order $O(p^6)$ contributions necessary for observed di-photon mass spectrum

• Main kinematic variable:
$$z = \frac{(P_K - P_\pi)^2}{m_K^2} = \frac{m_{YY}^2}{m_K^2}$$

• $\mathcal{B}(K^+ \to \pi^+ \gamma \gamma)$ parameterized in ChPT by unknown O(1) parameter \hat{c}
• $\mathcal{B}(K^+ \to \pi^+ \gamma \gamma)$ parameterized in ChPT by unknown O(1) parameter \hat{c}
• $\mathcal{B}(\chi^+ \to \pi^+ \gamma \gamma)$ parameterized in ChPT by unknown O(1) parameter \hat{c}
• $\mathcal{B}(\chi^+ \to \pi^+ \gamma \gamma)$ parameterized in ChPT by unknown O(1) parameter \hat{c}
• $\mathcal{B}(\chi^+ \to \pi^+ \gamma \gamma)$ parameterized in ChPT by unknown O(1) parameter \hat{c}
• $\mathcal{B}(\chi^+ \to \pi^+ \gamma \gamma)$ parameterized in ChPT by unknown O(1) parameter \hat{c}
• $\mathcal{B}(\chi^+ \to \pi^+ \gamma \gamma)$ parameterized in ChPT by unknown O(1) parameter \hat{c}
• $\mathcal{B}(\chi^+ \to \pi^+ \gamma \gamma)$ parameterized in ChPT by unknown O(1) parameter \hat{c}
• $\mathcal{B}(\chi^+ \to \pi^+ \gamma \gamma)$ parameterized in ChPT by unknown O(1) parameter \hat{c}
• $\mathcal{B}(\chi^+ \to \pi^+ \gamma \gamma)$ parameterized in ChPT by unknown O(1) parameter \hat{c}
• $\mathcal{B}(\chi^+ \to \pi^+ \gamma \gamma)$ parameterized in ChPT by unknown O(1) parameter \hat{c}
• $\mathcal{B}(\chi^+ \to \pi^+ \gamma \gamma)$ parameterized in ChPT by unknown O(1) parameter \hat{c}
• $\mathcal{B}(\chi^+ \to \pi^+ \gamma \gamma)$ parameterized in ChPT by unknown O(1) parameter \hat{c}
• $\mathcal{B}(\chi^+ \to \pi^+ \gamma \gamma)$ parameterized in ChPT by unknown O(1) parameter \hat{c}
• $\mathcal{B}(\chi^+ \to \pi^+ \gamma \gamma)$ parameterized in ChPT by unknown O(1) parameter \hat{c}
• $\mathcal{B}(\chi^+ \to \pi^+ \gamma \gamma)$ parameterized in ChPT by unknown O(1) parameter \hat{c}
• $\mathcal{B}(\chi^+ \to \pi^+ \gamma \gamma)$ parameterized in ChPT by unknown O(1) parameter \hat{c}
• $\mathcal{B}(\chi^+ \to \pi^+ \gamma \gamma)$ parameterized in ChPT by unknown O(1) parameter \hat{c}
• $\mathcal{B}(\chi^+ \to \pi^+ \gamma \gamma)$ parameterized in ChPT by unknown O(1) parameter \hat{c}
• $\mathcal{B}(\chi^+ \to \pi^+ \gamma \gamma)$ parameterized in ChPT by unknown O(1) parameter \hat{c}
• $\mathcal{B}(\chi^+ \to \pi^+ \gamma \gamma)$ parameterized in ChPT by unknown O(1) parameter \hat{c}
• $\mathcal{B}(\chi^+ \to \pi^+ \gamma \gamma)$ parameterized in ChPT by unknown O(1) parameter \hat{c}
• $\mathcal{B}(\chi^+ \to \pi^+ \gamma \gamma)$ parameterized in ChPT by unknown O(1) parameter \hat{c}
• $\mathcal{B}(\chi^+ \to \pi^+ \gamma \gamma)$ parameterized in ChPT by unknown O(1) parameterized in ChPT by unknown O(1) parameterized in ChPT by u

$K^+ \rightarrow \pi^+ \gamma \gamma$: Overview

- Signal $K^+ \to \pi^+ \gamma \gamma$ in $z \in (0.20, 0.51)$ and normalization $K^+ \to \pi^+ \pi^0, \pi^0 \to \gamma \gamma$ in $z \in (0.04, 0.12)$
- Same decay topology \rightarrow <u>systematics cancel</u>
- Main bkg source $K^+ \rightarrow \pi^+ \pi^0$; $\pi^0 \rightarrow \gamma \gamma$ with cluster merging in calorimeter

11/15

ChPT \hat{c} Fit Results

- \hat{c} measured in $O(p^4)$ and $O(p^6)$ by χ^2 minimization of simulated samples to data
- ChPT O(p⁴) is not sufficient to describe the data
- $\hat{c}_{ChPT \ O(p^6)} = 1.144 \pm 0.069_{stat} \pm 0.034_{syst}$

$$\mathcal{B}(K^+ \to \pi^+ \gamma \gamma)$$

• Differential decay-width in $O(p^6)$ with \hat{c} summed over the full z-range:

$$\mathcal{B}_{ChPT \ O(p^6)}(K^+ \to \pi^+ \gamma \gamma) = (9.61 \pm 0.15_{stat} \pm 0.07_{syst}) \times 10^{-7}$$

• Model independent measurement (markers) summed over z bins > 0.20:

 $\mathcal{B}_{M.I.}(K^+ \to \pi^+ \gamma \gamma | z > 0.20) = (9.46 \pm 0.19_{stat} \pm 0.07_{syst}) \times 10^{-7}$

13/15

First Search for ALPs in $K^+ \rightarrow \pi^+ a$, $a \rightarrow \gamma \gamma$

- Peak search over $m_{\gamma\gamma} = \sqrt{(P_K P_\pi)^2}$ in range 207-350 MeV/c² with 0.5 MeV/c² bins
- Exclusion regions at 90% CL on ALP coupling in the BC11 scenario; limits are from the present search and the earlier NA62 results

Conclusions

NA62 physics Run 2 started in 2021 and ongoing until CERN LS3

• $\pi^0 \rightarrow e^+e^-$ (new preliminary result):

- Precision comparable with the previous measurement, statistically dominated
- <u>Full agreement</u> with the latest theoretical predictions

• $K^+ \to \pi^+ \gamma \gamma$ (PLB 850 (2024) 138513):

- Improved precision by a factor of > 3, statistically dominated
- ChPT O(p⁴) is <u>not sufficient</u> to describe the data
- First search for ALP with gluon coupling in $K^+ o \pi^+ a$, $a o \gamma \gamma$ decays

BACKUP SLIDES

The NA62 Detector

$\pi^0 \rightarrow e^+ e^-$: Summary and Outlook

• New preliminary result based on data collected by NA62 in 2017-2018:

 $\mathcal{B}(\pi^0 \to e^+ e^-(\gamma), x > 0.95) = (5.86 \pm 0.30_{stat} \pm 0.11_{syst} \pm 0.19_{ext}) \times 10^{-8} = (5.86 \pm 0.37) \times 10^{-8}$

- Lower central value than in the KTeV measurement, but results are compatible: $\mathcal{B}_{KTeV}(\pi^0 \to e^+e^-(\gamma), x > 0.95) = (6.44 \pm 0.33) \times 10^{-8}$
- Results in agreement with the theoretical expectations when extrapolated using radiative corrections:

$$\mathcal{B}_{NA62}(\pi^0 \to e^+ e^-(\gamma), \text{ no-rad.}) = (6.22 \pm 0.39) \times 10^{-8}$$

$$\mathcal{B}_{theory(2022)}(\pi^0 \to e^+ e^-(\gamma), \text{ no-rad.}) = (6.25 \pm 0.03) \times 10^{-8}$$

$K^+ \rightarrow \pi^0 e^+ \nu \gamma$: Overview

- Decay described in ChPT as a direct emission, inner bremsstrahlung and their interference
- $\mathcal{B}(K^+ \to \pi^0 e^+ \nu \gamma)$ strongly depends on E_{γ} and $\theta_{e\gamma}$ cuts in K⁺ rest frame
- Three kinematic ranges considered; defined by E_{γ} and $\theta_{e\gamma}$ (table below)
- Measure normalized $\mathcal{B}(K^+ \to \pi^0 e^+ \nu \gamma)$ in j = 1,2,3 ranges:

$$R_j = \frac{\mathcal{B}(K^+ \to \pi^0 e^+ \nu \gamma | E_{\gamma}^j, \theta_{e\gamma}^j)}{\mathcal{B}(K^+ \to \pi^0 e^+ \nu(\gamma))}$$

• Test of T-conservation by T-odd observable ξ and its T-asymmetry A_{ξ} :

_ ۲	$\frac{\vec{p}_{\gamma} \cdot (\vec{p}_e \times \vec{p}_{\pi})}{\Lambda}$		$N_{+} - N_{-}$
ς –	$(M_K \cdot C)^3$, A_ξ	_	$\overline{N_+ + N}$

	E^{j}_{γ} , $ heta^{j}_{e\gamma}$	ChPT	ISTRA+	ΟΚΑ
$R_1 \times 10^2$	$E_{\gamma} > 10 MeV$, $\theta_{e\gamma} > 10^{\circ}$	1.804 ± 0.021	$1.81 \pm 0.03 \pm 0.07$	$1.990 \pm 0.017 \pm 0.021$
$R_2 \times 10^2$	$E_{\gamma} > 30 MeV$, $\theta_{e\gamma} > 20^{\circ}$	0.640 ± 0.008	$0.63 \pm 0.02 \pm 0.03$	$0.587 \pm 0.010 \pm 0.015$
$R_3 \times 10^{24}$	$E_{\gamma} > 10 MeV, 0.6 < cos \theta_{e\gamma} < 0.9$	0.559 <u>+</u> 0.006	$0.47 \pm 0.02 \pm 0.03$	$0.532 \pm 0.010 \pm 0.012$

$K^+ \rightarrow \pi^0 e^+ \nu \gamma$: Signal selection

- K^+ and e^+ tracks reconstructed and matched
- $\pi^0 \rightarrow \gamma \gamma$ reconstructed as two LKr clusters
- One isolated LKr cluster is identified as radiative γ
- Kinematic constraint: $m_{miss}^2(K_{e3\gamma}) = (P_K P_e P_{\pi^0} P_{\gamma})^2$
- Minimal differences in signal and normalization selections; only related to the radiative photon \rightarrow reduced systematics

 $K^+ \rightarrow \pi^0 e^+ \nu \gamma$: Results

	Range 1	Range 2	Range 3
$R \cdot 10^2$	$1.715 \pm 0.005_{stat.} \pm 0.010_{syst.}$	$0.609\pm0.003_{\text{stat.}}\pm0.006_{\text{syst.}}$	$0.533 \pm 0.003_{stat.} \pm 0.004_{syst.}$
$A_{\xi} \cdot 10^3$	$-$ 1.2 \pm 2.8 _{stat.} \pm 1.9 _{syst.}	$-$ 3.4 \pm 4.3 _{stat.} \pm 3.0 _{syst.}	$-9.1\pm5.1_{stat.}\pm3.5_{syst.}$

 $1.3 \cdot 10^5$ observed events; < 1% relative background contamination NA62 measurement of R_j smaller than $\mathcal{O}(p^6)$ ChPT by 5% relative (disagreement 3σ) Improvement on experimental precision of R_j measurements by a factor > 2

$K^+ \rightarrow \pi^0 e^+ \nu \gamma$: Error budget

Relative uncertainties in the R_j measurements.

	$\delta R_1/R_1$	$\delta R_2/R_2$	$\delta R_3/R_3$
Statistical	0.3%	0.4%	0.5%
Limited MC sample size	0.2%	0.4%	0.4%
Background estimation	0.1%	0.2%	0.1%
LKr response modelling	0.4%	0.5%	0.4%
Photon veto correction	0.3%	0.4%	0.3%
Theoretical model	0.1%	0.5%	0.1%
Total systematic	0.6%	0.9%	0.7%
Total	0.7%	1.0%	0.8%

$K^+ \rightarrow \pi^+ \mu^+ \mu^-$: Overview

- Flavor changing neutral current decay $K^+ \rightarrow \pi^+ l^+ l^-$ where $l = e, \mu$
- Contribution to the decays are mediated by virtual photon exchange: $K^{\pm} \rightarrow \pi^{\pm}\gamma^* \rightarrow \pi^{\pm}l^+l^-$
- Main kinematic variable: $z = m_{ll}^2/m_K^2$
- $W(z) = (a_+ + z \cdot b_+)G_F m_K^2 + W^{\pi\pi}(z)$ is the form factor of $K^{\pm} \rightarrow \pi^{\pm}\gamma^*$ parameterized in ChPT $O(p^6)$ with real parameters a_+, b_+
- Test of lepton flavor universality
- Measurements:
 - $\mathcal{B}(K^+ \to \pi^+ \mu^+ \mu^-)$; function $|W(z)|^2$ from $d\Gamma/dz$; form factor parameters a_+, b_+
- Signal selection:
 - Three tracks identified as $\pi^+\mu^+\mu^-$
 - Kinematic cuts to suppressing $K^{\pm} \rightarrow \pi^{+}\pi^{+}\pi^{-}$ events
- Normalization sample $K^{\pm} \rightarrow \pi^{+}\pi^{+}\pi^{-}$:
 - For measuring the number of kaon decays
 - Minimal differences in the event selection to reduce systematics

$K^+ \rightarrow \pi^+ \mu^+ \mu^-$: Results

27679 observed events with negligible background

$$a_+ = -0.575 \pm 0.013; b_+ = -0.722 \pm 0.043$$

 $\mathcal{B}(K^+ o \pi^+ \mu^+ \mu^-) = (9.15 \pm 0.08) \cdot 10^{-8}$ at 68% Cl

$K^+ \rightarrow \pi^+ \mu^+ \mu^-$: Decay width and form factor

$K^+ \rightarrow \pi^+ \mu^+ \mu^-$: Error budget

	δa_+	δb_+	$\delta {\cal B}_{\pi\mu\mu} imes 10^8$
Statistical uncertainty	0.012	0.040	0.06
Trigger efficiency Reconstruction and particle identification Size of the simulated $K_{\pi\mu\mu}$ sample Beam and accidental activity simulation Background	0.002 0.002 0.002 0.001 0.001	0.008 0.007 0.007 0.002 0.001	0.02 0.02 0.01 0.01
Total systematic uncertainty	0.003	0.013	0.03
$K_{3\pi}$ branching fraction $K_{\pi\mu\mu}$ radiative corrections Parameters α_+ and β_+	0.001 0.003 0.001	0.003 0.009 0.006	0.04 0.01
Total external uncertainty	0.003	0.011	0.04
Total uncertainty	0.013	0.043	0.08