

Introduction

- The decay $\overline{B} \rightarrow D\ell^- \overline{\nu}$ proceeds through a simple tree-level diagram and has been studied by many experiments
- The decay proceeds via the vector current
- The decay rate depends on the CKM element $|V_{cb}|$ and in the limit of neglecting the lepton mass on just one form factor $f_+(q^2)$
- Measurements of $|V_{cb}|$ from inclusive $b \rightarrow c\ell^- \overline{\nu}$ decay and exclusive $B \rightarrow D^{(*)} \ell^- \overline{\nu}$ decays show a 3σ level disagreement

- Using the full data set, *BABAR* has performed a new study of $\overline{B} \rightarrow D\ell^- \overline{\nu}$ by analyzing the process $e^+e^- \rightarrow Y(4S) \rightarrow B_{tag}\overline{B}_{sig}$, where B_{tag} is reconstructed in *B* hadronic decays and \overline{B}_{sig} represents the $\overline{B} \rightarrow D\ell^- \overline{\nu}$ signal mode
- Two different form factor parametrizations are employed, the model-independent Boyd-Grinstein-Lebed (BGL) expansion and the model-dependent Caprini-Lellouch-Neubert (CLN) expansion
 Nucl.Phys. B461, 493 (1996)

G. Eigen, ICHEP24 Prag, 19/07/2024

Nucl.Phys. B530, 153 (1998)

Analysis Strategy

- Data sample consist of $471 \times 10^6 Y(4S) \rightarrow B\overline{B}$ events (426 fb⁻¹) NIM A726, 203 (2013)
- One B is tagged via a hadronic decay $(D^{(*)0}, D^{(*)+}, D^{(*)+})$ $D_{\rm s}^{(*)+}$, J/ψ) plus up to 5 charged charmless light mesons and 2 neutral mesons

The reconstruction relies on 2 variables

 $\Delta E = E_{tag}^* - \frac{1}{2}\sqrt{s}$

 $m_{\rm ES} = \sqrt{\frac{1}{4}s - \left|\vec{p}_{\rm tag}^{*}\right|^{2}}$ where $\vec{p}_{\rm tag}^{*}$ and $E_{\rm tag}^{*}$ are 3-momentum and energy of B_{tag} in the CM frame

- Select events with $m_{\rm FS}$ > 5.27 GeV/ c^2 and $|\Delta E|$ < 72 MeV
- \blacksquare Select 10 modes on signal side: $D^0 \rightarrow K^- \pi^+$, $K^- \pi^+ \pi^0$, $K^- \pi^+ \pi^-$, $D^+ \rightarrow K^- \pi^+ \pi^-$, $K^- \pi^+ \pi^- \pi^0$ plus an e⁻ with p_e >200 MeV/c or a μ with p_u > 300 MeV/c
- Analysis is similar to that of $B \rightarrow D^* \ell^- \overline{\nu}$ PRL 123, 091801 (2019)

Analysis Strategy cont.

• Determine missing momentum $p_{\overline{v}} \equiv p_{\text{miss}} = p_{e^+e^-} - p_{tag} - p_D - p_{\ell}$

For a semileptonic decay with one missing neutrino this is fulfilled

- We use the discriminating variable $U = E_{miss}^{**} |\vec{p}_{miss}^{**}|$ $(E^{**}_{miss} \text{ and } \vec{p}^{**}_{miss} \text{ are } \vec{\nu} \text{ energy and 3-momentum in}$ \overline{B}_{sig} rest frame)
- We measure the extra energy in the calorimeter, require E_{Extra} (\leq 80 MeV)

- We perform a kinematic fit of the entire event, constraining B_{tag}, B_{sig} and D mesons to their nominal masses, constrain B and D decay products to separate vertices
- In case of multiple candidates, we retain that with the lowest E_{Extra}
- A second kinematic fit with a U=0 constraint is done to improve the resolution in the variables q^2 and $\cos \theta_{\ell}$ (q is the momentum transfer to the $\ell \bar{\nu}$ system and θ_{ℓ} is the lepton helicity angle)
 - G. Eigen, ICHEP24 Prag, 19/07/2024

Signal-to-Background Separation

- We use a novel technique to separate signal from background since the background shape varies across phase space
- Primary background is from $\overline{B} \rightarrow D^* \ell^- \overline{\nu}$ with $D^* \rightarrow D\pi$ or $D^* \rightarrow D\gamma$

- Background from charmless *B* decays and $q\bar{q}$ continuum is small
- We define pdfs for signal (4 two-piece Gaussians) and background (2 two-piece Gaussians)
- We test the binned fit on the U distribution for the $K^-\pi^+e^-\overline{\nu}$ mode G. Eigen, ICHEP24 Prag, 19/07/2024

Background Varies across Phase Space

- We show that this method works in different regions of $\cos \theta_{\ell}$ and q^2
- Binned fits to data in $K^-\pi^+\pi^+e^-\overline{\nu}$ mode
- Fits describe data well

- Binned fits to data in $K^-\pi^+\pi^-\pi^+e^-\overline{\nu}$ mode
- Fits describe data well
- Distributions illustrate different background shapes

Extraction of Signal Weight Factors

- We perform continuous *U*-variable fits in q^2 and $\cos \theta_{\ell}$ regions, selecting 50 events at a time that are closest to a selected event to determine signal and background components from which we determine signal weights for each event
- Signal weight $Q_i = \frac{S_i(U_i)}{S_i(U_i) + B_i(U_i)}$ and background weight $1 Q_i = \frac{B_i(U_i)}{S_i(U_i) + B_i(U_i)}$

We observe 16,701 events in all ten modes

- To illustrate how well this procedure works, we show the *U* variable distributions for different q^2 and $\cos \theta_{\ell}$ regions, summing the Q_i values of all 10 modes
- Red points result from signal weights Q_i and blue points from background weights (1-Q_i)

Unbinned Angular Fits

- We require |U| < 50 MeV, $0.5 \le q^2 \le 10$ GeV²/ c^2 & $|\cos \theta_\ell| < 0.97$ for the final sample
- We perform ML fits in the q^2 -cos θ_ℓ plane using only signal weights Q_i
- We add two external constraints
 - To set normalization of the form factors, the $w \rightarrow 1$ region calculations from lattice QCD are added as Gaussian constraints (6 $f_{0,+}(w)$ MILC data points)
 - To access |V_{cb}| the absolute q² –differential decay rate data from Belle are also incorporated as Gaussian constraints (40 dΠdw data points) PRD 93, 032006 (2016)
- The total likelihood function is
- We perform fits both with the BGL (N=2,3) and CLN forms
- Id projections of the nominal fit in comparison with simulation using the BGL form

 $\mathcal{L}(\vec{x})_{\text{ltot}} = -2\ln \mathcal{L}(\vec{x})_{\text{IBABAR}} + \chi^2(\vec{x})_{\text{IBelle}} + \chi^2(\vec{x})_{\text{IFNAL/MILC}}$

• The cos θ_{ℓ} distribution exhibits the sin² θ_{ℓ} dependence expected in the SM G. Eigen, ICHEP24 Prag, 19/07/2024 this indicates that the \overline{v} reconstruction works well 8

Cross Checks

Besides the nominal fit, we perform 3 other fits with different background subtraction to study systematic uncertainties

Arbitrary units

We perform cross checks between backgroundsubtracted data and efficiency-corrected simulations with BGL weighting and ISGW2 weighting for the confidence level of the fit and the E_{Extra} distribution PRD 52, 2783 (1995)

The relative resolution of the deviation of the reconstructedto-generated values for the q^2 and $\cos \theta_{\ell}$ distributions

Comparison of (1-Q) weighted data and background simulation

Form Factor Results

- f⁺ results for N=2 & N=3 for preliminary preliminary 1.2 1.2 **BABAR** data only and N=2, BaBar+FNAL/MILC N=3, BaBar+FNAL/MILC 1.1 1.1 **BABAR+FNAL/MILC** data N=2, BaBar-only N=3, BaBar-only _+ 0.9<u></u> Lattice points reduce errors 0.9 0.8 0.8 0.7 The $B \rightarrow D$ form factors 0.7 0.6 have improved precision 0.6 10 10 and show good agreement q^2 (GeV²) q^2 (GeV²) preliminary preliminary with the new, full $q^2 B_s \rightarrow D_s$ 1.3⊦ $f B \rightarrow D$ calculation of the HPQCD $f B \rightarrow D$ 1.2 Collaboration assuming $f B_s \rightarrow D_s$ 1.1 $f_0 B_s \rightarrow D_s$ orm factor $h_B \to D$ orm facto flavor SU(3) symmetry 0.6 - f (FNAL/MILC) $-h_{\perp} B \rightarrow D$ $-f_{o}$ (FNAL/MILC) 0.4 $h_B B_s \rightarrow D_s$ 0.9 Some slight tension exists $h_{\perp} B_{s} \rightarrow D_{s}$ 0.8 for h_ in the HQET basis 0.7 at maximum recoil point, 5 10 1.2 1.4 q^2 (GeV²) $q^2 \rightarrow 0$, but otherwise the SU(3) PRD 101, 074513 (2020) flavor symmetry seems to hold -> SU(3) flavor symmetry breaking cannot be large
 - This will be tested in $\overline{B} \rightarrow D^* \ell^- \overline{\nu}$ channel with a similar analysis G. Eigen, ICHEP24 Prag, 19/07/2024

|V_{cb}| Results from 2d Fit

2d fit to BABAR+Belle16+FNAL/MILC data: PRD 93, 032006 (2016) $V_{cb}^{BGL} = 0.04109 \pm 0.00116 \text{(preliminary)}$ $|V_{ch}|^{CLN} = 0.0409 \pm 0.00114$ (preliminary) • Compute $|V_{cb}|G(1)\eta_{EW}$ with $G(1)=1.0530\pm0.0083$, $\eta_{EW}=1.0066\pm0.0050$ • $\eta_{EW} \mathcal{G}(1) |V_{cb}| = 0.04355 \pm 0.00129^{(1.3)} \sigma$ higher) Compared to the world average • $\eta_{EW} \mathcal{G}(1) |V_{cb}|_{WA} = 0.04153 \pm 0.00098$ Good agreement with the |V_{cb}| from inclusive analysis $|V_{cb}| = 0.04219 \pm 0.00078$ 10Some tension with $|V_{cb}|$ from $\overline{B} \rightarrow D^* \ell^- \overline{\nu}$ $|V_{cb}| = 0.03846 \pm 0.00040 \pm 0.00055$ From HFLAV B⁰ & B⁺ branching fractions and Γ ' from the fit we get $|V_{cb}| = \sqrt{\mathcal{B}}/(\Gamma' \tau)$ G. Eigen, ICHEP24 Prag, 19/07/2024

Conclusions

- We performed the first 2-dimensional unbinned angular analysis in the q^2 cos θ_ℓ plane for the $\overline{B} \rightarrow D\ell^- \overline{\nu}$ process
- We used a novel event-wise signal-to-background separation
- The lepton helicity follows a sin² θ_{ℓ} distribution as expected in the SM; this is shown for the first time confirming that the v reconstruction works well
- For the BGL form we measure $|V_{cb}|=0.04109\pm0.00116$, which is closer to the value measured in inclusive $b \rightarrow c\ell^- \bar{\nu}$ decays
- The $B \rightarrow D$ form factors are found to be consistent with the $B_s \rightarrow D_s$ form factors predicted by lattice calculations and expected by flavor SU(3) relations
- This BABAR analysis has been submitted to Physical Review D

Thank you for your attention

Backup Slides

$\overline{B} \rightarrow D\ell \overline{\nu}$ Decay Rate and Form Factors

The amplitude for $\overline{B} \rightarrow D\ell^- \overline{\nu}$ comes from the vector interaction term

$$\left\langle D \left| \overline{c} \gamma_{\mu} b \right| \overline{B} \right\rangle_{V} = f_{+}(q^{2}) \left(\left(p_{B} + p_{D} \right)_{\mu} - \frac{(p_{B} + p_{D}) \cdot q}{q^{2}} q_{\mu} \right) + f_{0}(q^{2}) \frac{(p_{B} + p_{D}) \cdot q}{q^{2}} q_{\mu}$$

- $q=p_{\rm B}-p_{\rm D}$ is the 4-momentum of the recoiling $(\ell-\overline{\nu})$ system
- $f_+(q^2)$ and $f_0(q^2)$ are the vector and scalar form factors
- In HQET the form factors are written in terms of *B* and *D* 4-velocities *v* and *v*' $\frac{\langle D | \bar{c} \gamma_{\mu} b | \bar{B} \rangle_{v}}{\sqrt{m_{B} m_{D}}} = h_{+}(w)(v + v')_{\mu} + h_{-}(w)(v - v')_{\mu} \quad \text{where} \quad w = v \cdot v' = \frac{m_{B}^{2} + m_{D}^{2} - q^{2}}{2m_{B} m_{D}}$

The two form factors are related

$$f_{+}(q^{2}) = \frac{1}{2\sqrt{r}} \left((1+r)h_{+}(w) - (1-r)h_{-}(w) \right)$$

$$f_{o}(q^{2}) = \sqrt{r} \left(\frac{w+1}{1+r}h_{+}(w) - \frac{w-1}{1-r}h_{-}(w) \right)$$
 where $r = \frac{m_{D}}{m_{B}}$ and $f_{+}(0) = f_{0}(0)$

$\overline{B} \rightarrow D\ell \overline{\nu}$ Decay Rate and Form Factors

The differential $\overline{B} \rightarrow D\ell^- \overline{\nu}$ decay rate is

 $\frac{\mathrm{d}\Gamma}{\mathrm{d}q^{2}\mathrm{d}\cos\theta_{\ell}} = \frac{G_{F}^{2}|V_{cb}|^{2}\eta_{EW}^{2}}{32\pi^{3}}k^{3}|f_{+}(q^{2})|^{2}\sin^{2}\theta_{\ell}} \quad \text{where} \quad \frac{k = m_{D}\sqrt{w^{2}-1}}{k = m_{D}\sqrt{w^{2}-1}} \quad (|p_{D}| \text{ in } B \text{ rest frame})$

• $f_+(q^2)$ is connected form factor G(w)

$$G(w) = \frac{4r}{(1+r)^2} f_+(q^2)$$

The BGL Form

In the model-independent BGL (Boyd, Grinstein, Lebed) form the form factors are expressed as $f_i(z) = \frac{1}{P_i(z)\phi_i(z)} \sum_{n=0}^{N} a_n^i z^n \quad \text{where i=0,+,} \quad z(w) = \frac{\sqrt{w+1} - \sqrt{2}}{\sqrt{w+1} + \sqrt{2}},$

 $P_i(z)$: Blaschke factors that remove contributions of bound state $B_c^{(*)}$ poles, $\phi_i(z)$: non-perturbative outer functions,

- a_nⁱ: free parameters
- N: considered order of expansion
- Use following parameterizations • $P_i(z) = 1$

$$\phi_{+}(z) = \frac{1.1213(1+z)^2 \sqrt{1-z}}{\left[(1+r)(1-z) + 2\sqrt{r(1+z)} \right]}$$

$$\phi_0(z) = \frac{0.5299(1+z)^2(1-z)^{3/2}}{\left[(1+r)(1-z) + 2\sqrt{r}(1+z)\right]^4}$$

The coefficients a_n^i satisfy the normalization condition $\sum_n |a_n^i|^2 \le 1$

The CLN Form

In the model-dependent CLN (Caprini, Lellouch, Neubert) form the form factor is expressed as

$$\mathcal{G}(w) = \mathcal{G}(1) \left(1 - 8\rho_D^2 z(w) + (51\rho_D^2 - 10)z(w)^2 - (252\rho_D^2 - 84)z(w)^3 \right)$$

where QCD dispersion relations and HQET have been included, G(1) is the normalization and ρ_D is the slope

• This form has been used in previous $\overline{B} \rightarrow D\ell \overline{\nu}$ analyses

Binned Fits to U distribution

The line shapes of signal and background in the *U* variable distribution are defined as

$$\begin{cases}
\exp \frac{(x-\mu_i)^2}{2\sigma_{L,i}^2}, & \text{for } x \le \mu_i \\
\exp \frac{(x-\mu_i)^2}{2\sigma_{L,i}^2}, & \text{for } x > \mu_i \\
\exp \frac{(x-\mu_i)^2}{2\sigma_{R,i}^2}, & \text{for } x \le \mu_i \\
\exp \frac{(x-\mu_i)^2}{2\sigma_{R,i}^2}, & \text{for } x > \mu_i
\end{cases}$$

- For signal we use 4 two-piece Gaussians (2 for the central peak and 2 for the tails on each side of U=0
 - σ_{L,R,i} represent the widths of the two-piece Gaussians
 - α_i are relative fractions, $\alpha_0=1$
 - N_S is left unconstrained
- For background we use 2 two-piece Gaussians tails
 α₀=1

$$S = N_{S} \left(\sum_{i=0,1,2,3} \alpha_{i} \exp \frac{(x - \mu_{i})^{2}}{2\sigma_{L,R,i}^{2}} \right)$$

$$\mathcal{B} = N_B \left(\sum_{j=0,1}^{N} \alpha_j \exp \frac{(x - \mu_j)^2}{2\sigma_{L,R,j}^2} \right)$$

G. Eigen, ICHEP24 Prag, 19/07/2024

Binned Fits to U distribution cont.

- For fits to the data, normalizations of the signal and background components are always left unconstrained
- For the signal component, the shapes of the tails (μ_i , $\sigma_{L,R,i}$) for i=2,3 are fixed to values obtained from fit of truth-matched data
- Remaining 9 parameters $(\alpha_{1,2,3},\mu_{0,1},\sigma_{L,R,0,1})$ are allowed to vary between $(1-\kappa, 1/(1-\kappa) \times nominal value from truth-matched simulation fit (different <math>\kappa$ values between 0, 5% and 30% were studied)
- For the background component, all seven parameters are allowed to vary between $(1-\kappa, 1/(1-\kappa) \times \text{nominal value from non-truth-matched simulation (background) fit}$

Unbinned Fits to U distributions

Measure closeness between ith and jth event in phase space

$$\boldsymbol{g}_{ij}^{2} = \sum_{k=1}^{n} \left[\frac{\boldsymbol{\phi}_{k}^{i} - \boldsymbol{\phi}_{k}^{j}}{\boldsymbol{r}_{k}} \right]^{2}$$

• where $\vec{\phi}$ represents the n independent kinematic variables in phase space and \vec{r} gives corresponding ranges for normalizations (r_{q2} =10 GeV/c², $r_{cos \theta}$ =2 and n=2)

 $y = \sum Q_i$

• In each q^2 and $\cos \theta_{\ell}$ bin an unbinned fit is performed in the U distribution to extract to the signal $S_i(U_i)$ and background $B_i(U_i)$ components for each event yielding a weight

$$\mathcal{Q}_i = \frac{S_i(U_i)}{S_i(U_i) + \mathcal{B}_i(U_i)}$$

Now the total signal yield is

Number of events in each q^2 and $\cos \theta_{\ell}$ bin is ≈ 50

Unbinned Fits to U distributions

The pdf for detecting an event in the interval $(\phi, \phi + \Delta \phi)$ is

$$\mathcal{P}(\vec{x},\phi) = \frac{\frac{\mathrm{d}N(\vec{x},\phi)}{\mathrm{d}\phi}\eta(\phi)\Delta\phi}{\int \frac{\mathrm{d}N(\vec{x},\phi)}{\mathrm{d}\phi}\eta(\phi)d\phi}$$

• Where $dN(\vec{x}, \phi)/d\phi$ is the rate term, $\eta(\phi)$ is the phase-space-dependent efficiency and \vec{x} denotes the set of fit parameters

The normalization integral constraint (pure signal) yields

$$\mathcal{N}(\vec{x}) = \int \frac{\mathrm{d}N(\vec{x},\phi)}{\mathrm{d}\phi} \eta(\phi) \mathrm{d}\phi = \overline{N}(\vec{x}) = N_{data}$$

where \overline{N} is equal to the measured yield

Likelihood function

The non-extended likelihood function is

$$\mathcal{L}(\vec{x}) = -\prod_{i=1}^{N_{\text{data}}} \mathcal{P}(\vec{x}, \phi_i)$$

Taking the logarithm yields

$$-\ln \mathcal{L}(\vec{x}) = -\sum_{i=1}^{N_{data}} \mathcal{P}(\vec{x},\phi_i) \simeq N_{data} \ln \left[\mathcal{N}(\vec{x})\right] - \sum_{i=1}^{N_{data}} \ln \left[\frac{\mathrm{d}N}{\mathrm{d}\phi}\eta(\phi)\right]$$

• Using the approximation $\mathcal{N} = \int \frac{dN}{d\phi} \eta(\phi) d\phi = \left(\int d\phi\right) \left\langle \frac{dN}{d\phi} \eta(\phi) \right\rangle$ where $\left\langle \frac{dN}{d\phi} \eta(\phi) \right\rangle = \sum_{i=1}^{N_{\text{sim}}^{\text{gen}}} \frac{dN}{d\phi} \frac{\eta(\phi)}{N_{\text{gen}}^{\text{gen}}} = \sum_{i=1}^{N_{\text{sim}}^{\text{acc}}} \frac{dN}{d\phi} \frac{1}{N_{\text{gen}}^{\text{gen}}}$

In the last step just accepted events are included, $\eta(\phi)$ is either 0 or 1

Likelihood function

Ignoring term that are not variable in the fit yields

$$-\ln \mathcal{L}(\vec{x}) = N_{\text{data}} \times \ln \left[\sum_{i=1}^{N_{\text{sim}}^{\text{acc}}} \frac{dN}{d\phi}\right] - \sum_{i=1}^{N_{\text{data}}} \ln \left[\frac{dN}{d\phi}\right]$$

Including the background subtraction procedure yield

$$-\ln \mathcal{L}(\vec{x}) = \left[\sum_{i=1}^{N_{\text{data}}} \mathcal{Q}_{i}\right] \times \ln \left[\sum_{i=1}^{N_{\text{sim}}^{\text{acc}}} \frac{dN}{d\phi}\right] - \sum_{i=1}^{N_{\text{data}}} \mathcal{Q}_{i} \ln \left[\frac{dN}{d\phi}\right]$$

Since simulation includes model based form factor calculation (ISGW2 for $f_+(q^2)$, we need to include weight

yielding

$$-\ln \mathcal{L}(\vec{x}) = \left[\sum_{i=1}^{N_{data}} \mathcal{Q}_{i}\right] \times \ln \left[\sum_{i=1}^{N_{sim}^{acc}} \tilde{w}_{i} \frac{dN}{d\phi}\right] - \sum_{i=1}^{N_{data}} \mathcal{Q}_{i} \ln \left[\frac{dN}{d\phi}\right]$$

G. Eigen, ICHEP24 Prag, 19/07/2024

 $\tilde{w}_{i} = 1 / \left| \frac{dN}{d\phi} \right|$

Fit Results

Fit parameters for the BGL expansion with N=2

fit configuration	$a_0^{f_+} \times 10$	$a_1^{f_+}$	$a_2^{f_+}$	$a_1^{f_0}$	$a_{2}^{f_{0}}$	$ V_{cb} \times 10^3$	$\chi^2_{\rm MILC}$	$\chi^2_{ m Belle}$
BABAR-1, Belle	0.126 ± 0.001	-0.096 ± 0.003	0.352 ± 0.052	-0.059 ± 0.003	0.155 ± 0.049	41.09 ± 1.16	1.15	24.50
BABAR-2, Belle	0.126 ± 0.001	-0.096 ± 0.003	0.352 ± 0.052	-0.059 ± 0.003	0.155 ± 0.049	41.12 ± 1.16	1.17	24.54
BABAR-3, Belle	0.126 ± 0.001	-0.096 ± 0.003	0.350 ± 0.052	-0.059 ± 0.003	0.153 ± 0.049	41.12 ± 1.16	1.18	24.55
BABAR-4, Belle	0.126 ± 0.001	-0.096 ± 0.003	0.352 ± 0.052	-0.059 ± 0.003	0.156 ± 0.049	41.05 ± 1.17	1.14	24.45
BABAR-1	0.126 ± 0.001	-0.097 ± 0.003	0.334 ± 0.063	-0.059 ± 0.003	0.133 ± 0.062	-	1.55	-

Fit parameters for the BGL expansion with N=3

Fit parameters for the CNL expansion

fit configuration	$\mathcal{G}(1)$	$ ho_D^2$	$ V_{cb} \times 10^3$	$\chi^2_{\rm FNAL/MILC}$	$\chi^2_{\rm Belle}$
BABAR-1, Belle	1.056 ± 0.008	1.155 ± 0.023	40.90 ± 1.14	1.04	24.65
BABAR-2, Belle	1.056 ± 0.008	1.156 ± 0.023	40.92 ± 1.14	0.99	24.72
BABAR-3, Belle	1.056 ± 0.008	1.156 ± 0.023	40.92 ± 1.14	1.00	24.71
BABAR-4, Belle	1.056 ± 0.008	1.154 ± 0.023	40.87 ± 1.14	1.09	24.57
BABAR-1	1.053 ± 0.008	1.179 ± 0.027	—	0.53	_

• Reweighted $\overline{B} \rightarrow D\ell^- \overline{\nu}$ branching fraction

Measurement	$\mathcal{B}(\overline{B} \to D\ell^-\overline{\nu}_\ell) \times 10^2$	$ V_{cb} \times 10^3$
BABAR-10 [14]	$\mathcal{B}_{B^0} = (2.15 \pm 0.11 \pm 0.14)$	40.02 ± 1.76
BABAR-10 14	$\mathcal{B}_{B^+} = (2.16 \pm 0.08 \pm 0.13)$	38.67 ± 1.41
Belle-16 <u>15</u>	$\mathcal{B}_{B^0} = (2.33 \pm 0.04 \pm 0.11)$	41.66 ± 1.22
Belle-16 <u>15</u>	$\mathcal{B}_{B^+} = (2.46 \pm 0.04 \pm 0.12)$	41.27 ± 1.23

Systematic Errors

Add 3 fit configurations for determining systematics of background subtraction
 BABAR-2, N_c=60, signal and background shapes locally fixed from simulation
 BABAR-3, N_c=50, signal are allowed to vary by 5% from simulation
 BABAR-3, N_c=50, tighter selection criteria (E_{Extra}< 0.6 GeV, CL > 10⁻⁶)

• Compare resolutions of deviation of reconstructed-to-generated q² and $\cos \theta_{\ell}$ distributions included in the fit and not included in the fit $\rightarrow \sigma$ =2.6% vs 3.4%

We evaluate the effect of background subtraction

BGL $N = 2$	value	CLN	value
$ V_{cb} \times 10^3$	41.09 ± 1.16	$ V_{cb} \times 10^3$	40.90 ± 1.14
$a_0^{f_+} \times 10$	0.126 ± 0.001	$\mathcal{G}(1)$	1.056 ± 0.008
$a_1^{f_+}$	-0.096 ± 0.003	$ ho_D^2$	1.155 ± 0.023
$a_2^{f_+}$	0.352 ± 0.053		
$a_1^{f_0}$	-0.059 ± 0.003		
$a_2^{f_0}$	0.155 ± 0.049		

