

Introduction

- The decay *B→Dℓ⁻_V* proceeds through a simple tree-level diagram and has been studied by many experiments
- The decay proceeds via the vector current
- The decay rate depends on the CKM element $|V_{cb}|$ and in the limit of neglecting the lepton mass on just one form factor *f*+(*q*2)
- Measurements of $|V_{cb}|$ from inclusive b $\rightarrow c \ell^{-} \bar{\nu}$ decay and exclusive $B\rightarrow D^{(*)}$ $\ell^-\bar{\nu}$ decays show a 3σ level disagreement

- Using the full data set, *BABAR* has performed a new study of $B\rightarrow D\ell^-\bar{\nu}$ by analyzing the process $e^+e^- \rightarrow Y(4S) \rightarrow B_{tag} \overline{B}_{sig}$, where B_{tag} is reconstructed in *B* hadronic decays and B_{sig} represents the $\overline{B}{\rightarrow}D\ell^{\text{-}}\overline{\nu}\,$ signal mode
- Two different form factor parametrizations are employed, the model-independent Boyd-Grinstein-Lebed (BGL) expansion and the model-dependent Caprini-Lellouch-Neubert (CLN) expansion Nucl.Phys. **B461**, 493 (1996)

G. Eigen, ICHEP24 Prag, 19/07/2024 2

Nucl.Phys. **B530**, 153 (1998)

Analysis Strategy

- Data sample consist of 471×10^6 $Y(4S) \rightarrow BB$ events (426 fb⁻¹) NIM **A726**, 203 (2013)
- One B is tagged via a hadronic decay ($D^{(*)0}$, $D^{(*)+}$, D_s^{(*)+}, J/ ψ) plus up to 5 charged charmless light mesons and 2 neutral mesons

The reconstruction relies on 2 variables

 $\varDelta E = E^{^{\ast}}_{\text{tag}} - \frac{1}{2} \sqrt{s}$

 $m_{ES} = \sqrt{\frac{1}{4} s - |\vec{p}^*_{tag}|^2}$ where \vec{p}^*_{tag} and \vec{E}^*_{tag} are
 $\Delta \vec{F} - \vec{F}^* = \frac{1}{2} \sqrt{s}$ of B_{tag} in the CM frame ² where \vec{p}^*_{tag} and \vec{E}^*_{tag} are 3-momentum and energy of B_{taq} in the CM frame

- \bullet Select events with m_{ES} >5.27 GeV/ c^2 and $|\Delta E|$ <72 MeV
- Select 10 modes on signal side: $D^0 \rightarrow K^-\pi^+$, $K^-\pi^+\pi^0$, $K^-\pi^+\pi^+\pi^-$, $D^+ \rightarrow K^-\pi^+\pi^+$, $K^-\pi^+\pi^-\pi^0$ plus an e^- with p_e >200 MeV/*c* or a μ with p_u > 300 MeV/*c*
- Analysis is similar to that of $B{\to}D^*\ell^{\scriptscriptstyle +}\overline{\nu}$ PRL **123**, 091801 (2019)

Analysis Strategy cont.

Determine missing momentum p_z^2

$$
\rho_{\overline{v}} \equiv \rho_{\text{miss}} = \rho_{e^+e^-} - \rho_{tag} - \rho_D - \rho_e
$$

For a semileptonic decay with one missing neutrino this is fulfilled

- \bullet We use the discriminating variable $(E^{**}_{miss}$ and \vec{p}^{**}_{miss} are $\bar{\nu}$ energy and 3-momentum in *B*_{sig} rest frame) $U = E^{\ast\ast}_{\textsf{miss}} - \left| \vec{\rho}^{\ast\ast}_{\textsf{miss}} \right|$
- We measure the extra energy in the calorimeter, require E_{Extra} (\leq 80 MeV)

- \bullet We perform a kinematic fit of the entire event, constraining B_{taq} , B_{siq} and *D* mesons to their nominal masses, constrain *B* and *D* decay products to separate vertices
- \bullet In case of multiple candidates, we retain that with the lowest E_{Extra}
- A second kinematic fit with a *U*=0 constraint is done to improve the resolution in the variables q^2 and cos θ_ℓ (q is the momentum transfer to the ℓ ⁻ ν system and θ_ℓ is the lepton helicity angle)
	- G. Eigen, ICHEP24 Prag, 19/07/2024

We test the binned fit on the *U* distribution for the *K* $\tau \tau$ + $e^{\tau} \overline{\nu}$ mode G. Eigen, ICHEP24 Prag, 19/07/2024

Background Varies across Phase Space

- We show that this method works in different regions of cos θ_{ℓ} and q^2
- Binned fits to data in $K^-\pi^+\pi^+e^-\overline{\nu}$ mode
- Fits describe data well

- Binned fits to data in K ^{*n+n+e+* $\bar{\nu}$ mode}
- Fits describe data well
- Distributions illustrate different background shapes

Extraction of Signal Weight Factors

- **We perform continuous** *U***-variable fits in** q^2 **and cos** θ_ℓ **regions, selecting 50 events** at a time that are closest to a selected event to determine signal and background components from which we determine signal weights for each event
	-

Signal weight $Q_i = \frac{S_i(U_i)}{S(U_i) + B(U_i)}$ and background weight

 $1-Q_i=\frac{\mathcal{B}_i(U_i)}{\mathcal{S}(U_i)+\mathcal{B}_i}$ $\mathcal{S}_i(\bm{\mathsf{U}}_i) + \mathcal{B}_i(\bm{\mathsf{U}}_i)$

We observe 16,701 events in all ten modes

 $\mathcal{S}_i(\bm{\mathsf{U}}_i) + \mathcal{B}_i(\bm{\mathsf{U}}_i)$

- To illustrate how well this procedure works, we show the *U* variable distributions for different q^2 and cos θ_{ℓ} regions, summing the *Q*i values of all 10 modes
- Red points result from signal weights *Q*ⁱ and blue points from background weights (1-*Q*ⁱ)

Unbinned Angular Fits

- We require $|U|$ <50 MeV, $0.5 \le q^2 \le 10$ GeV²/ c^2 & $|\cos \theta_e|$ < 0.97 for the final sample
- We perform ML fits in the q^2 -cos θ_ℓ plane using only signal weights Q_i

 $\mathcal{L}(% \mathcal{L}^{\prime }\cap \mathcal{$

 $\overrightarrow{ }$

- \bullet We add two external constraints
	- To set normalization of the form factors, the *w*→1 region calculations from lattice QCD are added as Gaussian constraints (6 $f_{0,+}(w)$ MILC data points) PRD **92**, 034506 (2015)
	- \bullet To access $|V_{cb}|$ the absolute q^2 -differential decay rate data from Belle are also incorporated as Gaussian constraints (40 d*H*dw data points) PRD 93, 032006 (2016)

 $\overrightarrow{ }$

 $\big| \vec{x} \big)_{\!\!\mid\!\!\! \!\mid}$ babar + $\chi^2($

 $\left| \vec{x} \right\rangle_{\!\!\text{ltot}} = -2\!\ln\mathcal{L}(\vec{x})$

- The total likelihood function is
- \bullet We perform fits both with the BGL (N=2,3) and CLN forms
- \bullet 1d projections of the nominal fit ℓ in comparison with simulation. using the BGL form

 $\overrightarrow{ }$

 $\left| \vec{X} \right\rangle_\text{Belle} + \chi^2($

 $\overrightarrow{ }$

x) |*FNAL*/*MILC*

 \bullet The cos θ_{ℓ} distribution exhibits the sin² θ_{ℓ} dependence expected in the SM this indicates that the v reconstruction works well 8 G. Eigen, ICHEP24 Prag, 19/07/2024

Cross Checks

● Besides the nominal fit, we perform 3 other fits with different background subtraction to study systematic uncertainties

Arbitrary units

 \bullet We perform cross checks between backgroundsubtracted data and efficiency-corrected simulations with BGL weighting and ISGW2 weighting for the confidence level of the fit and the E_{Extra} distribution PRD **52**, 2783 (1995)

The relative resolution of the deviation of the reconstructedto-generated values for the *q*² and cos θ_{ℓ} distributions

Comparison of (1-*Q*) weighted data and background simulation

Form Factor Results

- f⁺ results for N=2 & N=3 for **preliminary** preliminary preliminary 1.2 1.2 BABAR data only and *N=3***,** BaBar+FNAL/MILC *N=2***,** BaBar+FNAL/MILC 1.1 1.1 BABAR+FNAL/MILC data *N=2***,** BaBar-only *N=3***,** BaBar-only 1 1 0.9 **← Lattice points reduce errors** *++ f* 0.9 *f* $0.8⁺$ 0.8 0.7 The *B*→*D* form factors 0.7 0.6 have improved precision 0.6 0 5 10 0 5 10 and show good agreement q^2 (GeV 2) q^2 (GeV²) preliminary preliminary preliminary with the new, full $q^2 B_s \rightarrow D_s$ 1.2 1.3 $B \rightarrow D$ *f* calculation of the HPQCD 1 $1.2⁵$ $f_0 B\rightarrow D$ $\int_{+}^{0} B_s \rightarrow D_s$ Collaboration assuming 0.8 1.1 f ^{*n*} B ^{*s*→ D ^{*s*}} orm factor form factor form factor $-h$ _{*B*→*D*} orm facto flavor SU(3) symmetry *0* (FNAL/MILC) *⁺ f* 0.6 1 $h₊ B \rightarrow D$ $f_{\stackrel{\scriptstyle 0}{\nu}}$ (FNAL/MILC) 0.4 \cdots $h \to B_s \to D_s$ 0.9 0.2 Some slight tension exists \cdots *h*₊ $B_s \rightarrow D_s$ 0.8 0 for h₋ in the HQET basis 0.7 −0.2 at maximum recoil point, 0 5 10 1 1.2 1.4 q^2 (GeV²) *w* $q^2 \rightarrow 0$, but otherwise the SU(3) PRD **101**, 074513 (2020) flavor symmetry seems to hold \rightarrow SU(3) flavor symmetry breaking cannot be large
	- G. Eigen, ICHEP24 Prag, 19/07/2024 This will be tested in $B \rightarrow D^* \ell^- \bar{\nu}$ channel with a similar analysis

|*V*cb| Results from 2d Fit

11

Conclusions

- \bullet We performed the first 2-dimensional unbinned angular analysis in the q^2 cos θ_ℓ plane for the *B→Dℓ⁻⊽* process
- We used a novel event-wise signal-to-background separation
- \bullet The lepton helicity follows a sin² θ_{ℓ} distribution as expected in the SM; this is shown for the first time confirming that the v reconstruction works well
- \bullet For the BGL form we measure $|V_{cb}|=0.04109\pm0.00116$, which is closer to the value measured in inclusive *b →cℓ*⁻⊽ decays
- **●** The *B*→*D* form factors are found to be consistent with the *B*_s→*D*_s form factors predicted by lattice calculations and expected by flavor SU(3) relations
- This *BABAR* analysis has been submitted to Physical Review D

Thank you for your attention

Backup Slides

B→Dℓ⁻ \overline{v} Decay Rate and Form Factors

The amplitude for *B→Dℓ⁻⊽* comes from the vector interaction term

$$
\langle D|\overline{c}\gamma_{\mu}b|\overline{B}\rangle_{V} = f_{+}(q^{2})\left((p_{B}+p_{D})_{\mu} - \frac{(p_{B}+p_{D})\cdot q}{q^{2}}q_{\mu}\right) + f_{0}(q^{2})\frac{(p_{B}+p_{D})\cdot q}{q^{2}}q_{\mu}
$$

- \bullet *q*= p_B - p_D is the 4-momentum of the recoiling $(l-\bar{v})$ system
- \bullet f₊(q²) and f₀(q²) are the vector and scalar form factors
- In HQET the form factors are written in terms of *B* and *D* 4-velocities *v* and *v*' $D|\bar{c}\gamma_{\mu}b|B$ *V* $m_{_B}m_{_D}$ $= h_{+}(w)(v+v')_{\mu} + h_{-}(w)(v-v')_{\mu}$ where $w=v\cdot v' = \frac{m_{\beta}^{2}+m_{D}^{2}-q^{2}}{2m_{-}m_{-}}$ 2*mBmD* where

The two form factors are related

$$
f_{+}(q^{2}) = \frac{1}{2\sqrt{r}}((1+r)h_{+}(w) - (1-r)h_{-}(w))
$$
\n
$$
f_{0}(q^{2}) = \sqrt{r}\left(\frac{w+1}{1+r}h_{+}(w) - \frac{w-1}{1-r}h_{-}(w)\right)
$$
\nwhere $r = \frac{m_{D}}{m_{B}}$ and $f_{+}(0) = f_{0}(0)$

B→Dℓ⁻ \overline{v} Decay Rate and Form Factors

The differential *B→Dℓ⁻⊽* decay rate is

 $d\Gamma$ d $\bm{{\mathsf{q}}}^2$ dcos $\bm{\theta}_{_\ell}$ = G_F^2 V_{cb} 2 $\eta_{\text{\tiny EW}}^2$ $\frac{1}{32\pi^3}k^3\Big|f_{_+}(q^2)\Big|$ $\frac{1}{2}$ sin² θ _c where $k = m$ _{*D*} $\sqrt{w^2 - 1}$ (| p _D| in *B* rest frame

 $f_{+}(q^{2})$ is connected form factor $G(w)$

$$
G(w) = \frac{4r}{(1+r)^2} f_{+}(q^2)
$$

The BGL Form

In the model-independent BGL (Boyd, Grinstein, Lebed) form the form factors are expressed as $f_i(z) =$ 1 $P_{i}(z)\phi_{i}(z)$ *a n i zn n*=0 *N* $\sum a'_n z^n$ where $i=0,+$, $z(w) =$ *w* +1−√2 $w + 1 + \sqrt{2}$ where $i=0,+$, $z(w)=\frac{vw+1}{\sqrt{2}}$,

*P*_i(z): Blaschke factors that remove contributions of bound state $B_c^{(*)}$ poles, ϕ (z): non-perturbative outer functions,

- a_nⁱ: free parameters
- *N:* considered order of expansion
- \bullet Use following parameterizations $P_i(z) = 1$

$$
\phi_{+}(z) = \frac{1.1213(1+z)^{2}\sqrt{1-z}}{\left[(1+r)(1-z)+2\sqrt{r}(1+z)\right]}
$$

$$
\phi_0(z) = \frac{0.5299(1+z)^2(1-z)^{3/2}}{\left[(1+r)(1-z) + 2\sqrt{r}(1+z) \right]^4}
$$

The coefficients a_n ⁱ satisfy the normalization condition *a n* $\int |^{2}$ $\sum |a'_n|^2 \leq 1$ *n*

The CLN Form

In the model-dependent CLN (Caprini, Lellouch, Neubert) form the form factor is expressed as

$$
\mathcal{G}(w) = \mathcal{G}(1)\left(1 - 8\rho_D^2 z(w) + (51\rho_D^2 - 10)z(w)^2 - (252\rho_D^2 - 84)z(w)^3\right)
$$

where QCD dispersion relations and HQET have been included, *G*(1) is the normalization and ρ_D is the slope

● This form has been used in previous $\overline{B} \rightarrow D\ell$ - $\overline{\nu}$ analyses

Binned Fits to *U* distribution

The line shapes of signal and background in the *U* variable distribution are defined as

$$
f_i(x, \mu_i, \sigma_{L,i}, \sigma_{R,i}, N_i) = N_i \begin{cases} exp \frac{(x - \mu_i)^2}{2\sigma_{L,i}^2}, & for x \le \mu_i \\ exp \frac{(x - \mu_i)^2}{2\sigma_{R,i}^2}, & for x \le \mu_i \\ exp \frac{(x - \mu_i)^2}{2\sigma_{R,i}^2}, & for x > \mu_i \end{cases}
$$

● For signal we use 4 two-piece Gaussians (2 for the central peak and 2 for the tails on each side of *U*=0

 $S = N_{S}$ $\sum \alpha_{i}$ exp

 $\big($

⎝ ⎜

i=0,1,2,3

 $\left| \mathcal{B} = \mathcal{N}_{\mathcal{B}} \right| \sum \alpha_j \exp \left(\frac{1}{2} \mathcal{A} \mathcal{$

 $\big($

⎝

 $\|$

j=0,1

∑

∑

18

 $\overline{}$

⎠

 $(x - \mu_i)^2$

 $\overline{}$

⎠

 $2\sigma_{\rm L,R,i}^{2}$

 $(x - \mu_j)^2$

 $2\sigma_{\rm\scriptscriptstyle L,R,j}^2$

- \bullet $\sigma_{LR,i}$ represent the widths of the two-piece Gaussians
- \bullet α_i are relative fractions, $\alpha_0=1$
- **•** N_S is left unconstrained
- For background we use 2 two-piece Gaussians tails \bullet $\alpha_0=1$

Binned Fits to *U* distribution cont.

- **For fits to the data, normalizations of the signal and background components are** always left unconstrained
- For the signal component, the shapes of the tails $(\mu_{\mathsf{i}},\,\sigma_{\mathsf{L},\mathsf{R},\mathsf{i}})$ for i=2,3 are fixed to values obtained from fit of truth-matched data
- Remaining 9 parameters $(\alpha_{1,2,3},\mu_{0,1},\sigma_{L,R,0,1})$ are allowed to vary between (1-k, 1/(1 k x nominal value from truth-matched simulation fit (different k values between 0, 5% and 30% were studied)
- For the background component, all seven parameters are allowed to vary between $(1-x, 1/(1-x)x)$ nominal value from non-truth-matched simulation (background) fit

Unbinned Fits to *U* distributions

Measure closeness between ith and jth event in phase space

$$
g_{ij}^2 = \sum_{k=1}^n \left[\frac{\phi_k^i - \phi_k^j}{r_k} \right]^2
$$

where ϕ represents the n independent kinematic variables in phase space and \vec{r} gives corresponding ranges for normalizations ($r_{\rm q2}$ =10 GeV/c², $r_{\rm cos}$ $_{\theta}$ =2 and n=2)

 $\mathcal{y} = \sum \mathcal{Q}_i$

i

 \bullet In each q^2 and cos θ _{*f*} bin an unbinned fit is performed in the U distribution to extract to the signal $S_i(U_i)$ and background $B_i(U_i)$ components for each event yielding a weight

$$
Q_i = \frac{S_i(U_i)}{S_i(U_i) + B_i(U_i)}
$$

• Now the total signal yield is

Number of events in each q^2 and cos θ_ℓ bin is ≈ 50

Unbinned Fits to *U* distributions

The pdf for detecting an event in the interval(ϕ , $\phi+\Delta\phi$) is

$$
\mathcal{P}(\vec{x},\phi) = \frac{dN(\vec{x},\phi)}{\int \frac{dN(\vec{x},\phi)}{d\phi} \eta(\phi) d\phi}
$$

Where $dN(\vec{x}, \phi)/d\phi$ is the rate term, $\eta(\phi)$ is the phase-space-dependent efficiency and *x* denotes the set of fit parameters

The normalization integral constraint (pure signal) yields

$$
\mathcal{N}(\vec{x}) = \int \frac{dN(\vec{x},\phi)}{d\phi} \eta(\phi) d\phi = \overline{N}(\vec{x}) = N_{data}
$$

where \overline{N} is equal to the measured yield

Likelihood function

The non-extended likelihood function is

$$
\mathcal{L}(\vec{x}) = -\prod_{i=1}^{N_{\text{data}}} \mathcal{P}(\vec{x}, \phi_i)
$$

sim

Taking the logarithm yields

$$
-\ln \mathcal{L}(\vec{x}) = -\sum_{i=1}^{N_{\text{data}}}\mathcal{P}\left(\vec{x},\phi_{i}\right) \approx N_{\text{data}}\ln\left[\mathcal{N}(\vec{x})\right] - \sum_{i=1}^{N_{\text{data}}}\ln\left[\frac{dN}{d\phi}\eta(\phi)\right]
$$

sim

i=1

Using the approximation where ${\cal N}$ $=$ $\int\!\frac{\text{d}N}{\text{d}\phi}\eta(\phi) \text{d}\phi \!=\!\! \Bigl(\int\!\text{d}\phi\Bigr)\!\Bigl\langle\frac{\text{d}N}{\text{d}\phi}\Bigr|$ $\eta(\phi)$ d*N* $\textsf{d}\phi$ $\eta(\phi)$ = d*N* $\mathsf{d} \phi$ $\eta(\phi)$ $N_{\text{sim}}^{\text{gen}}$ *N*sim gen $\sum \frac{dN}{d\phi} \frac{dN}{N} =$ d*N* $\mathsf{d} \phi$ 1 $N_{\text{sim}}^{\text{gen}}$ *N*sim *acc* ∑

In the last step just accepted events are included, $\eta(\phi)$ is either 0 or 1

i=1

Likelihood function

Ignoring term that are not variable in the fit yields

$$
-\ln \mathcal{L}(\vec{x}) = N_{data} \times \ln \left[\sum_{i=1}^{N_{sim}^{acc}} \frac{dN}{d\phi} \right] - \sum_{i=1}^{N_{data}} \ln \left[\frac{dN}{d\phi} \right]
$$

Including the background subtraction procedure yield

$$
-\ln \mathcal{L}(\vec{x}) = \left[\sum_{i=1}^{N_{\text{data}}} Q_i\right] \times \ln \left[\sum_{i=1}^{N_{\text{sim}}^{\text{acc}}} \frac{dN}{d\phi}\right] - \sum_{i=1}^{N_{\text{data}}} Q_i \ln \left[\frac{dN}{d\phi}\right]
$$

Since simulation includes model based form factor calculation (ISGW2 for *f*+(*q*2), we need to include weight

yielding

$$
-ln \mathcal{L}(\vec{x}) = \left[\sum_{i=1}^{N_{data}} \mathcal{Q}_i \right] \times ln \left[\sum_{i=1}^{N_{sim}^{acc}} \tilde{w}_i \frac{dN}{d\phi} \right] - \sum_{i=1}^{N_{data}} \mathcal{Q}_i ln \left[\frac{dN}{d\phi} \right]
$$

G. Eigen, ICHEP24 Prag, 19/07/2024

 $\tilde{w}_1 = 1 / \frac{dN}{dA}$

⎡

 $\overline{}$

 $\textsf{d}\phi$

 \Box ⎥

 $\left|\frac{dN}{d\phi}\right|$

Fit Results

Fit parameters for the BGL expansion with *N*=2

Fit parameters for the BGL expansion with *N*=3

• Fit parameters for the CNL expansion

Reweighted *B→Dℓ*⁻ $\bar{\nu}$ branching fraction

Systematic Errors

● Add 3 fit configurations for determining systematics of background subtraction ● BABAR-2, *N_c*=60, signal and background shapes locally fixed from simulation ● BABAR-3, *N_c*=50, signal are allowed to vary by 5% from simulation ● BABAR-3, *N_c*=50, tighter selection criteria (E_{Extra} < 0.6 GeV, CL > 10⁻⁶)

Compare resolutions of deviation of reconstructed-to-generated q^2 and cos θ_{ℓ} distributions included in the fit and not included in the fit $\rightarrow \sigma = 2.6\%$ vs 3.4%

We evaluate the effect of background subtraction

