

Run-2/3 measurement of the muon anomalous magnetic moment by the Muon g-2 experiment at Fermilab

Kim Siang Khaw for Fermilab Muon g-2 collaboration ICHEP 2024 @ Prague 2024.07.18

Why the Muon g-2?

magnetic moment and spin

- Can be calculated and measured to high precision (sub-ppm)
- Precision test of SM calculations (at 4-loop QED, EW, and QCD)
- Powerful discriminant for BSM physics models \bullet

$$a_{\mu}^{\text{SM}} = a_{\mu}^{\text{QED}} + a_{\mu}^{\text{EW}} + a_{\mu}^{\text{HVP, LO}} + a_{\mu}^{\text{HVP, NLO}} + a_{\mu}^{\text{HVP, NLO}} + a_{\mu}^{\text{HVP, NLO}}$$

= 116 591 810(43) × 10⁻¹¹.

Vacuum **Polarization**

 $^{\text{NNLO}} + a_{\mu}^{\text{HLbL}} + a_{\mu}^{\text{HLbL, NLO}}$

Theory Initiative White Paper T. Aoyama et al. Phys. Rept. 887 (2020)

Theory vs Experiment for g-2

- Large discrepancy between experiment and WP (2020)
- New results since WP 2020
 - **BMW** (swapping HVP from WP with their value) falls in between WP (2020) and New BMW result, see Z. Fodor's experiment talk on Fri 6:15 pm (Sec 06)
 - CMD-3 in tension with other e⁺e⁻ machine data (data-driven approach)
- Many parallel efforts are underway to resolve the theoretical ambiguity

Status of the Muon g-2 experiment

Celebrating first beam at MC1 (Summer 2017)

- Apr 2021: Run-1 Result (2018 data)
- Aug 2023: Run-2/3 Result (2019-20 data)
- ~2025:

Run-4/5/6 Result (2021-23 data) Reached our proposal goal for statistics (~4x Run-1/2/3)

Fermilab director Lia Merminga pushed the red button to shut the beam down (Jul 10, 2023)

Principle of g-2 measurement

into a magnetic storage ring

Muon g-2 superconducting storage ring

• 14 m diameter, 1.45 T C-shaped SC magnet thermal insulation inner coil top hat ***** www.www. wedge pole piece outer coil edge shim muon fixed NMR probes region В surface outer coil correction coil 112 m 535666666666666655566666 top hat Fixed probes inner coil above/below muon

storage region

In-vacuum NMR trolley maps field every ~3 days

2D field maps (~8000 points)

378 fixed NMR probes monitor field during muon storage at 72 locations

Additional corrections

see KSK's poster 225 on Thu 7:00 pm (Sec 05) **Beam Dynamics Corrections**

E-field & vertical motion: Spin precesses slower than in basic equation

Phase changes over each muon fill: **Phase acceptance, differential** decay, and muon losses

$$C_e + C_p + C_{pa} + C_{dd} + C_{ml}$$

$$1 + B_k + B_q$$

Transient magnetic fields: Quad vibrations and kicker eddy current

• ω_a corrections dominated Run-1 systematics: 500(93) ppb For Run-2/3 they are 580(40) ppb, dominated by C_e and C_p

Run-2/3 uncertainty improvements

Analysis Improvements

Running Conditions

- Damaged quad resistors fixed
- Hall/Ring temperature stabilized
- Kicker strength improved

Suppressing CBO with a RF system

- CBO is the coherent transverse betatron oscillation
- Coupled with the calorimeter acceptance, it distorts the time spectrum

- Implemented a RF system to reduce the CBO significantly.
- Run-5/6 data (almost half of the entire data) was taken with the RF system.

Electrostatic Quadrupole + RF

Run-4/5/6 expected improvements

Run-2/3 Result: PRL **131**, 161802 (2023)

TABLE I. Values and uncertainties of the \mathcal{R}'_{μ} terms in Eq. (2), and uncertainties due to the external parameters in Eq. (1) for a_{μ} . Positive C_i increases a_{μ} ; positive B_i decreases a_{μ} [see Eq. (2)]. The ω_a^m uncertainties are decomposed into statistical and systematic contributions. All values are computed with full precision and then rounded to the reported digits.

	Quantity	Correction (ppb)	Uncertainty (ppb)
	ω_a^m (statistical)		201
ω_a	ω_a^m (systematic)		25
	C_e	451	32
	C_p	170	10
	C_{pa}	-27	13
RD	C_{dd}	-15	17
	C_{ml}	0	3
	$f_{\text{calib}} \cdot \langle \omega'_p(\vec{r}) \times M(\vec{r}) \rangle$		46
ω_n	B_k	-21	13
P	B_q	-21	20
	$\mu'_{p}(34.7^{\circ})/\mu_{e}$		11
	m_{μ}/m_{e}		22
	$g_e/2$		0
	Total systematic for \mathcal{R}'_{μ}		70 —
	Total external parameters		25
	Total for a_{μ}	622	215

$\mathcal{R}'_{\mu} = \frac{\omega_a}{\tilde{\omega}'_n(T_r)} = \frac{f_{\text{clock}} \,\omega_a^m \left(1 + C_e + C_p + C_{ml} + C_{pa}\right)}{f_{\text{calib}} \,\langle\omega_p(x, y, \phi) \times M(x, y, \phi)\rangle (1 + B_k + B_q)}$

- Expected Run-4/5/6 improvements (Estimation for systematics on-going)
- ~100 (in total Runs 1-6), ~x4 stats
- ~x10 reduction of CBO with the RF system (Run-5/6)
- New signal processing algorithm
- New beam-monitoring system (miniSciFi)
- New tracker-based analysis method
- More calibrations + cross-calibrations. Better understanding and handling of magnet drift. More and better measurements
- Surpassed the TDR systematics goal of 100 ppb. And possibly even smaller for Run-4/5/6!

BSM searches (EDM, CPT/LI, DM)

- Muon Electric Dipole Moment (EDM)
 - > The spin precession plane is tilted in the presence of the EDM.
 - Run-1 analysis in review, Run-2/3 analysis in progress
 - > Current limit (BNL): $1.8 \times 10^{-19} \text{ e} \cdot \text{cm}$ \rightarrow Projected limit: $\leq 3 \times 10^{-20} \text{ e} \cdot \text{cm}$

see B. Mitra's talk on Fri 8:47 am (Sec 03)

- CPT and Lorentz Invariance Violation
 - $\succ \omega_a$ modulated at the sidereal motion freq.
 - > Run-2/3 analysis in review.
 - ≻ Current limit (BNL): 1.4×10^{-24} GeV → Projected limit (FNAL Run-2/3): $O(10^{-25})$ GeV
- Ultralight Muonic Dark Matter (scalar)
 - $\succ \omega_a$ modulated at the DM Compton frequency.
 - \succ Run-2/3 analysis in progress.

Summary

- Our collaboration has completed the data-taking in Summer 2023
- Run-2/3 results announced last year (PRL 131, 161802 (2023)), detailed analysis report in arXiv:2402.15410 (accepted by PRD).
- Analysis of the remaining data (Run-4/5/6 taken from 2021-2023) is underway
- A final result with ~140 ppb uncertainty is expected to be published in 2025
 - We met the TDR statistical goal and will likely surpass the systematics goal
 - Many improvements have been made in systematics. For instance, Run-5/6 data was taken with the RF system, and CBO was significantly reduced.
- This result will set the stage for a final showdown between the current theory and experiment in 2025
- BSM searches are also underway EDM, CPT/LV and DM

Acknowledgement

- Department of Energy (USA)
- National Science Foundation (USA)
- Istituto Nazionale di Fisica Nucleare (Italy)
- Science and Technology Facilities Council (UK)
- Royal Society (UK)
- Leverhulme Trust (UK)
- European Union's Horizon 2020
- Strong 2020 (EU)
- German Research Foundation (DFG)
- National Natural Science Foundation of China (NSFC)
- MSIP, NRF and IBS-R017-D1 (Republic of Korea)

MSIP

Foundation of Korea