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Abstract:To face the hightened requirements of real-time and precision bunch-by-bunch luminosity determination and beam-induced background monitoring at the High-Luminosity LHC, the CMS BRIL project
constructs a stand-alone luminometer, the Fast Beam Condition Monitor (FBCM). It will be fully independent from the CMS central timing, trigger and data acquisition services and able to operate at all times with a fast
triggerless readout. The CO2-cooled silicon-pad sensors will be connected to a dedicated front-end ASIC to amplify the signals and provide a few ns timing resolution. FBCM is based on a modular design, adapting
several electronics components from the CMS Tracker for power, control and read-out functionalities. The 6-channel FBCM23 ASIC outputs a single binary high-speed asynchronous signal carrying the Time-of-Arrival
and Time-over-Threshold information. The prototype chip is under extensive tests. The detector design and the results of the first validation tests are reported.

FBCM

The FBCM is a silicon pad sensor-based standalone

luminometer capable of running independently from CMS
data taking that will replace the current Fast Beam Condition
Monitor (BCM1F) luminometer. It will use 288 sensors with
an area of 1.7 x 1.7 cm?. A dedicated application-specific
integrated circuit (ASIC) has been designed for FBCM. The
primary role of the FBCM luminometer is precise luminosity

measurement (1% precision). Several nanoseconds time
resolution of FBCM also allows for independent
beam induced background measurement.

From the physics point of view, the FBCM sensors
should have a particular area and distance to the
beamline, balancing occupancy, and acceptance.

Effects the number of hits and linearity.
Effects the noise and signal separation.

Detector modules should stand up to 200 Mrad of
total ionizing dose, and ASIC technology has been
selected accordingly.

For the calibration of the luminometer, special
beam scans known as van der Meer (VdM)
scans are performed, during which the
calibration constant is measured. VdM scans P
are conducted at low pileup values (below
1.5), whereas data collection occurs at high
pileup values (up to 200 in HL-LHC).
Therefore, it is necessary to extrapolate this
calibration constant to high pileup conditions.
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This involves checking how collision rates
deviate from linearity at high pileups, and
iIncorporating these adjustments into our

luminosity calculations.

A new ASIC, irradiated to 200 MRad, was tested to
prove its functionality. Data from this test is currently
being analyzed. Only 2-pad sensors were tested in this
initial phase. A second test beam is being prepared in
July to evaluate the response of 6-pad sensors. The
final sensor selection will be based on the results of
these test beams.

One test board is equipped with one ASIC, which read
out 6 silicon pad sensors.

Time over Threshold spectra for all six sensors on the
test board was measured.

Most of the test beam has been conducted using a
15 GeV proton beam, along with other types of
particles whose data has not yet been analyzed.
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Difference between the mean number of hits fitted at low pileup (close to
the conditions where detector is calibrated) and extrapolated to higher
pileup values (corresponding to conditions expected during physics data
taking) and the observed number of the mean number of hits at that
pileup in the simulation, divided by the mean number of hits.

In this simulation study, four different thresholds on the deposited charge (Qtsn) were studied for two types of
sensors. Among all the combinations, the Si-pad sensor of 150 um thickness with a threshold of Qish = 1.49
fC, as well as the sensor of 290 pm thickness with Qish = 2.24 fC demonstrated the best linearity.

Test beam Normalized distribution of the Time over Threshold

AIDA telescope with six pixel planes
IS used to reconstruct the trajectory
of the particles. Using telescope
track pointing information it is
possible to study the response of
the sensor as a function of the hit
position. This analysis is ongoing.
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Inner tracker pixel module Two data acquisition modes were used at the test
installed behind the FBCM was beam: triggered and untriggered. Triggered readout
el e arEsh e afeeive ek is used to test the noise reduction via reduction of

the integration window, however this mode is only
for telescope and FBCM data used for validation tests and will be not available in
readout. operation of FBCM detector.

Summary:

The following steps are planned for the simulation to compare and verify the results with the test beam data:

« Simulation of the latest ASIC used in the test beam.

« Sensors responce change as a function of the radiation dose plan to be simulated and integrated into the CMS sofrware. This will

allow for comparison with the test beam results for irradiated sensors.

- Time-over-threshold plots for different ASIC thresholds to be extracted from the simulation and compared with the corresponding

plots from the test beam.

modified for the next test beam
to use direct bonding to the ASIC
inputs and minimize the lenght of
the signal path for all channels.
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