The LHCb RICH Upgrade II ## Silvia Gambetta on behalf of the LHCb RICH collaboration ## The LHCb Upgrade II - LHCb experiment[2010-2018] collected 9 fb⁻¹ see Yasmine's talk - LHCb Upgrade I[2022-] expected to collect ~ 50 fb⁻1 see Giulia's talk - LHCb Upgrade II[2034-] to collect ~ 300 fb⁻¹ see Renato's talk [CERN-LHCC-2017-003] [CERN-LHCC-2018-027] [CERN-LHCC-2021-012] LHCb Upgrade II: programme to fully realise the flavour-physics potential of the HL-LHC ## The challenge for the RICH system - RICH 1 (C₄F₁₀): upstream, 2 GeV/c 40 GeV/c over 25 mrad 300 mrad - RICH 2 (CF₄): downstream, 15 GeV/c 100 GeV/c over 15 mrad 120 mrad - system installed and operated in Run1&2 [Eur. Phys. J. C 73 (2013) 2431 [JINST 17 P07013 (2022)] system Upgraded during LS2 and operating since 2022 (see Giovanni's talk) Improve or at least maintain the same PID performance of Run3 but in much harsher conditions and a well constrained envelope ## The power of timing Prompt nature of Cherenkov light: time of arrival of Cherenkov photons for a given track can be predicted to better than $10~{\rm ps}$ timing implementation on RICH detectors helps in reducing the peak occupancy and recover PID performance [https://doi.org/10.17863/CAM.78867] ⇒ need for fast Photon Detector and fast electronics ## Possible candidates: SiPM #### SiPMs have several advantages: - extremely fine granularity - resilience to magnetic fields - high photon detection efficiency - ullet good time resolution ($\sim 100\,\mathrm{ps}$) #### But important drawbacks: - dark count rates after irradiation - ⇒ R&D on cryogenic operations - ⇒ R&D on local cooling of SiPM with design of dedicated housing - ⇒ R&D on implementing annealing to compensate for irradiation effects [NIM A 922, 243-249 (2019)] ### Possible candidates: MCP Extremely good time resolution < 40 ps, custom pixelisation tailored for individual applications, but important drawbacks related to lifetime and rate capability: R&D ongoing Fused Silica 3.8mm Window (LAPPD #63) R&D to investigate possible options of low-gain MCPs: MCP-HPD [JINST 13 C12005 2018] # The plan for timing: LS3 enhancement - timing concept new to LHCb but common amongst many systems for LHCb upgrade II - anticipate ASIC development to LS3: introduce time stamp of photons - FastRICH ASIC fast enough to be used in upgrade II - \Rightarrow timing in Run4 limited by photon detectors - improvement in PID performance expected already in Run4 - LS3 PID TDR [CERN-LHCC-2023-005] approved in March 2024 | LHC Run 3 | Sensor
MAPMT | FE ASIC
CLARO | FPGA
Kintex 7 | NDC | Optical link
GBT Versatile Link | NDC | Back-end
PCle40 | |--------------|------------------------------|------------------|------------------|-----|------------------------------------|-----|-----------------------| | LHC Run 4 | Sensor
MAPMT | FastF | RICH | DC | Optical link | DC | Back-end
PCle40(0) | | HL-LHC Run 5 | Sensor
SIPM / MAPMT / MCP | FastF | RICH | DC | Optical link
lpGBT / VL+ | DC | Back-end
PCle400 | | | Sensor $[\sigma]$ | ASIC time walk | FE time gate | TDC time bin | |--------------|----------------------|------------------|----------------|-----------------| | LHC Run 3 | 150 ps | $< 4\mathrm{ns}$ | 6.25 ns | None | | LHC Run 4 | 150 ps | CFD correction | $2\mathrm{ns}$ | $25\mathrm{ps}$ | | HL-LHC Run 5 | $\sim 50\mathrm{ps}$ | CFD correction | $2\mathrm{ns}$ | $25\mathrm{ps}$ | ## Test beam campaign - intense testbeam campaign ongoing - test prototype electronics for LS3 with MaPMTs currently operated in the RICH Upgrade - test candidates for photon detection in Upgrade II ## RICH performance: Cherenkov angle resolution $$\Delta \beta/\beta = \Delta \theta_C \tan \theta_C$$, where $\Delta \theta_C = \sigma_c/\sqrt{N_{ph}} + C_{\rm tracking, alignment, ...}$ - σ_c is the resolution per single photon in a ring. The main contributions to keep under control (disk \rightarrow ring) are: - emission point error due to the unknown emission point of the Cherenkov light: optimise the optics of the mirror system to focus the Cherenkov light - pixel size error due to the finite size of the photon detectors: choose photon detectors with optimal spatial granularity - chromatic error due to the radiator dispersion (different Cherenkov angles from the same track): appropriate choice of the radiator material to avoid large variations of the refractive index with the Cherenkov photons energy - photon yield (N_{ph}) as large as possible - background counts as low as possible - efficient pattern recognition keeping the peak occupancy under control (around 30%) ### **Emission Point error** Road to the optimisation of the optics design: - move flat mirrors in the acceptance ⇒ requires R&D on carbon fibre flat mirrors, light-weight supports and with good resistance to radiation ⇒ improve emission point error - further increase in spherical mirror curvature radius ⇒ reduced occupancy and decreased pixel error ### FTDR design for RICH1 #### Split optics design for RICH1 Aim to reduce the emission point error: 0.38 mrad (Run3) $\rightarrow \sim$ 0.13 mrad (Run5) Optics optimisation less critical in RICH2 due to the lower occupancy and the already excellent Cherenkov angle resolution \Rightarrow optimisation ongoing and option of flat mirror in the acceptance under study ### Chromatic error - fluorocarbon gases were chosen because of the relatively low chromatic dispersion - C_4F_{10} : n = 1.0014 at 400 nm, gas vessel: $2 \times 3 \times 1 \text{ m}^3$ - CF₄: n = 1.0005 at 400 nm, gas vessel: $100 \,\mathrm{m}^3$ - the chromatic error depends on the convolution between the dispersion and the photon detector quantum efficiency (QE) - R&D investigating photocathodes shifted towards the green to reduce single-photon chromatic error Aim to reduce the chromatic error: 0.59 mrad (Run3) ↓ 0.28 mrad (Run5) \Rightarrow choice of the photon detector for RICH Upgrade II matched also with minimisation of chromatic uncertainty ### PID Performance - different scenarios being considered to balance cost and performance at different values of instantaneous luminosity: - different timing capability - different pixel sizes - different optics designs - timing plays a crucial role - improvement of Cherenkov angle resolution in RICH2 leads to improvement in PID at high momentum target improvement in resolution: RICH1 [0.82 \rightarrow 0.38 mrad] - RICH2 [0.5 \rightarrow 0.22 mrad] ### **Conclusions** - the operating conditions for the LHCb Upgrade II will result in unprecedented conditions for a RICH detector concerning high track and hit densities and radiation environment - R&D ongoing on optics, radiators, photon detectors, fast electronics, mechanics to achieve the ultimate performance of a RICH detector in a hadronic environment - very challenging programme with plenty of room for synergies with other R&D campaigns - close collaboration with DRD4 programme in all areas ### Photon detection at LHCb RICH in Run1&2 - HPDs equipped with embedded front-end electronics working at 1 MHz readout employed in Run1 and Run2 - MaPMTs with external readout at 40 MHz installed in LS2 and operated for Run3 and Run4 - R11265 and R12699 chosen for Upgrade I for the excellent active area ($\sim 80\%$), good spatial granularity $\mathcal{O}(10\text{mm}^2)$, and excellent response to detection rates up to $\mathcal{O}(100\text{ MHz/cm}^2)$ impressive quantum efficiency of 40% at 300 nm in average ### Possible candidate MaPMT - very reliable photon detector: state of the art currently installed in the RICH detectors - limitations coming from pixels size: 2.8 × 2.8 mm² for R11265 - limitations coming from TTS~ 300 ps - limitations coming form magnetic field tolerance - limitations coming from maximum anodic current HAMAMATSU TENTATIVE DATA SHEET MULTIANODE PHOTOMULTIPLIER TUBE R13742 Dec. 2015 Exclusive for HPF-BS/ CERN and HPI/ INFN MILANO (for LHCb/RICH) Super Bialkali Photocathode (SBA), UV Window, 1 Inch Square 8 x 8 Multianode and Fast Time Response #### Genera | Genera | | | | |--|------------------|----------------------|-------| | Parameter | | Description | Unit | | Spectral Response Range | | 185 to 650 | nm | | Peak Wavelength | | 350 | nm | | Photocatho | ode Material | Bialkali | | | Window | Material | UV Glass | | | | Thickness | 0.8 | mm | | Dynode | Structure | Metal Channel Dynode | - | | | Number of Stage | 12 | - | | Anode | Number of Pixels | 64 (8 x 8 Matrix) | | | | Pixel Size | 2.88 x 2.88 | mm | | Effective Area | | 23 x 23 | mm | | Dimensional Outline (W x D x H) | | 26.2 x 26.2 x 17.4 | mm | | Packing Density (Effective Area / External Size) | | 77 | % | | Weight | | 27 | 9 | | Operating Ambient Temperature | | -30 to +50 | deg C | | | | | | Maximum Ratings (Absolute Maximum Values) | Parameter | Value | Unit | |--|-------|------| | Supply Voltage (Between Anode and Cathode) | 1100 | V | | Average Anode Output Current in Total | 0.1 | mA | - very low noise - excellent quantum efficiency: new version with green shifted spectrum produced and tested - very good active area - employable in low occupancy regions ### Front-end Electronics - ~3 ns configurable time gating for suppression of out-of time hits - better than 100 ps time-stamping and time-over-threshold measurement per photon (TDC) or constant-fraction discrimination to avoid the need for ToT and/or multi-level discrimination - radiation tolerant ASIC - High density, low power (few mW per channel) - FastRICH ASIC under development ## **FastRICH** | Parameter | Specification | |----------------------------|--| | Technology | 65 nm CMOS | | Die dimensions / # of pads | $5 \times 5 \text{mm}^2 / \mathcal{O}(100)^2$ | | Package / sensor coupling | QFN88 | | Radiation hardness | Yes (TID > 100 Mrad and triplication) | | # of channels | 16 | | Channel type | Linear (i.e. not pixelated) | | Channel connection | Single-ended | | Polarity | Configurable positive or negative | | Input signal attenuation | Configurable per channel: 0, 25%, 50%, 75% | | TDC time bin | 25 ps | | Electronics time jitter | $\sim 40 \mathrm{ps}$ RMS for $50 \mu\mathrm{A}$ pulses. | | | $\sim 30 \mathrm{ps}$ RMS for pulses above $100 \mu\mathrm{A}$. | | Residual time walk | < 200 ps pk-to-pk (after CFD, over 50 µA to 5 mA range) | | CFD recovery time | 15 ns | | Time gate | 2 ns nominal, | | | configurable width and offset to the 40 MHz clock | | Power consumption analog | Target $< 4.5 \mathrm{mW}$ * per channel | | Power consumption digital | $\sim 2 \mathrm{mW}$ per channel | | Energy resolution | Non linear (not required when CFD is implemented). | | Dynamic range | $5\mu\mathrm{A}$ to $5\mathrm{mA}$ ** | | Maximum front-end rate | Ability to detect signals spaced by 25 ns | | Testing and calibration | Internal test charge generation controlled by digital signal | | Slow control interface | I2C with multiple chips on the same I2C bus | | VCO oscillation freq. | $1.28\mathrm{GHz}$ | | # of VCO stages | 16 | | ToA Bits/event | fToA @800ps: 2 (Assumes a 2ns gate) | | | ufToA @25ps: 5 | | Output | Digital differential, lpGBT compatible | | Output links freq. | 160, 320, 640, 1280 MHz | | # of output links | Programmable at chip level from 1 to 4 | ## **Expected Performance** MaPMT (Run 3) SiPM & geometry SiPM RICH2 optimisation of sources of uncertainty to improve Cherenkov angle resolution and keep the peak occupancy under $\sim 30\%$ 0.33 0.19 0.19 0.37 0.36 0.05 0.20 0.10 0.10 39 33 25 0.50 0.42 0.22 ### Radiators - fluorocarbon gases were chosen because of the relatively low chromatic dispersion - C_4F_{10} : n = 1.0014 at 400 nm, gas vessel: $2 \times 3 \times 1 \text{ m}^3$ - \circ CF₄: n = 1.0005 at 400 nm, gas vessel: 100 m^3 - the chromatic error depends on the convolution between the dispersion and the photon detector quantum efficiency (QE) - R&D investigating photocathodes shifted towards the green to reduce single-photon chromatic error - fluorocarbon gases have large Global Warming Potential $GWP(C_4F_{10}) = 8500 CO_2$, $GWP(CF_4) = 7000 CO_2$ - could replace CF₄ (n=1.0005) with CO₂ (n=1.0004): photon yield ($\propto 1 1/n^2$) marginally lower, but worse chromaticity - intense R&D and studies needed to find alternatives to C₄F₁₀, matching its refractive index and allowing operations in the LHCb environment see G. Hallewell's talk on radiators - R&D on green coolants ongoing: see S. Jakobsen's talk