

MEASUREMENTS OF W AND Z BOSONS IN CMS

Federico Vazzoler, on behalf of the CMS Collaboration

ICHEP 2024 Prague | 18 July 2024

ICHEP 2024 PRAGUE

PHENOMENOLOGIST POINT OF VIEW

BUILDING BLOCK OF THE SM

- 1983: discovered at CERN SPS in pp collisions
- Today: CERN LHC is practically a vector boson factory

POWERFUL THEORETICAL PROBE

- Test theoretical (QCD, EW) predictions + determination of SM fundamental parameters
- Probe PDFs: increased data/prediction accuracy
- Constraint New Physics: **extremely tiny** deviations (could be) visible from **extremely precise** measurements

EXPERIMENTALIST POINT OF VIEW

CLEAN EXPERIMENTAL SIGNATURE

- Leptonic decays to $e/\mu \rightarrow ID$ eff. ~1%
- E/p_T res. ~1%, scale res. ~0.1%

ACHIEVING PERCENT-LEVEL MEASUREMENTS TAKES TIME AND EFFORT

RUN 2 DATASET

- Large and diverse: still a lot to learn
- Multidifferential measurements with negligible stat. unc.
- Low PU data, better control of $p_T^{\rm miss}$ systematics

- Test the SM at different energy (or combine with Run 2) data)
- Deploy new strategies in view of HL-LHC
- Monitor detector performances \bullet

W AND Z CROSS SECTIONS AT LOW PILE-UP AND HIGHER ENERGIES

UNDERSTAND MODELLING OF EWK BOSON PRODUCTION

- Available calculations up to $N^3LO (QCD) + NLO (EW)$
- Sources of experimental uncertainties:
 - luminosity
 - momentum and recoil resolution
 - lepton efficiencies

AVAILABLE DATA

- Run 2 low pileup data at **5.02 TeV** (~300 pb⁻¹) and **13 TeV** (~200 pb⁻¹):
 - Better recoil resolution
 - Lower QCD multijet background
- Run 3 data at 13.6 TeV (partial dataset, ~5.04 pb⁻¹)
 - Unprecedented energy regime to be tested .

W AND Z CROSS-SECTIONS AT 5.02 TEV AND 13 TEV

EVENT SELECTION & BACKGROUNDS

- <u>Object selection</u>: identify one (two) prompt, energetic and isolated lepton(s)
- EW and $t\bar{t}$ backgrounds from simulation lacksquare
- For the W case, QCD multijets background from \bullet control region in data (invert m_T cut)

Obs Sig EW tĪ QC

	$W^+ ightarrow e^+ u$	$W^- ightarrow e^- \overline{ u}$	$Z ightarrow e^+e^-$	$W^+ ightarrow \mu^+ \nu$	$W^- ightarrow \mu^- \overline{ u}$	$Z \rightarrow$
served	689131	561870	72040	1016318	796731	128
nal	591760 ± 770	467820 ± 680	71520 ± 270	923620 ± 960	708680 ± 840	12839
Ţ	12150 ± 110	11450 ± 110	$159\pm~13$	38200 ± 200	33710 ± 180	27
	4768 ± 69	4780 ± 69	$216\pm~15$	6326 ± 80	6345 ± 80	36
D multijet	80750 ± 280	77980 ± 280	-	47910 ± 220	47930 ± 220	

Post-fit event yields @ 13 TeV

W AND Z CROSS-SECTIONS AT 5.02 TEV AND 13 TEV

FIT TOGETHER

SIGNAL EXTRACTION

- Fit $m_{\ell\ell}$ and m_T distribution for Z and W \rightarrow extract cross-section and cross-section ratios
- Luminosity unc. at 5.02 TeV (13 TeV) 1.9% (2.3%), \bullet other experimental unc. ~0.3%
- Good agreement with NNLOpredictions at different \bullet energies

		• • • • • • • •	• • • • • • •	• • • • • • •		
•	$W^+ ightarrow \ell^+ u$	$W^- o \ell^- ar{ u}$	$\mathrm{Z} ightarrow \ell^+ \ell^-$	$W^\pm o \ell^\pm u$	W^{\pm}/Z	
Total	0.32	0.34	0.37	0.26	0.25	
Efficiency (stat)	0.23	0.21	0.26	0.17	0.11	
Trigger prefire correction	0.14	0.13	0.22	0.14	0.08	, ,
QCD multijet (syst)	0.11	0.15	0.12	0.09	0.15	
MC sim. stat	0.10	0.12	0.11	0.08	0.13	
EWK+tt cross section	0.08	0.10	0.02	0.09	0.07	
$PDF + \alpha_S$	0.05	0.07	0.03	0.05	0.05	
Efficiency (syst)	0.04	0.05	0.09	0.04	0.06	
QCD multijet (stat)	0.04	0.04	0.03	0.03	0.04	
Hadronic recoil calibration	0.02	0.02	0.02	0.02	0.03	
μ_R and μ_F scales	0.01	0.01	0.01	0.01	0.01	

Post-fit uncertainties @ 5.02 TeV

Z CROSS-SECTION AT 13.6 TEV

EVENT SELECTION & CORRECTIONS

- Object selection: two prompt, energetic and isolated muons
- <u>Object corrections</u>: delicate for early stage analyses
 - \rightarrow Muon efficiency
 - → Scale and energy resolution
 - \rightarrow Trigger
 - \rightarrow Pileup

<u>SMP-22-017</u>

SIGNAL EXTRACTION

- Maximum likelihood fit to the $m_{\mu\mu}$ distribution
- Luminosity unc. 2.3%, other experimental unc. 0.92% (muon efficiency dominated)
- Good agreement with theory predictions

EXTRACTION OF $\sin^2 \theta_{\text{eff}}^{\ell}$ **AT 13 TeV**

FUNDAMENTAL EW PARAMETER

- Relates masses of EW bosons + govern strength of EW interaction
- At all orders in EW: $\sin^2 \theta_{\text{eff}}^{\ell} = \kappa_{\ell} (1 m_W^2 / m_Z^2)$
 - Precise calculation within SM
 - Two most precise exp. results from LEP/SLD differ by ~ 3 **0**

SMP-22-010

EXPERIMENTAL ASPECTS

- Study final state leptons angular distribution in NCDY events, using Collins-Soper frame
- Asymmetry in lepton decay angle $1 + \cos^2 \theta + A_4 \cos \theta$ $\rightarrow A_{FB} = 3/8A_4 \rightarrow \text{near } m_Z \text{ depends on } \sin^2 \theta_{\text{eff}}^{\ell}$
- Rely on $y_{\ell\ell} \rightarrow$ only valence quarks contribute + significant $y_{\ell\ell}$ -dependent diluition \rightarrow strong PDFs dependence

EXTRACTION OF $\sin^2 \theta_{eff}^{\ell}$ AT 13 TeV

FUNDAMENTAL EW PARAMETER

- Relates masses of EW bosons + govern strength of EW interaction
- At all orders in EW: $\sin^2 \theta_{\text{eff}}^{\ell} = \kappa_{\ell} (1 m_W^2 / m_Z^2)$
 - Precise calculation within SM
 - Two most precise exp. results from LEP/SLD differ by ~ 3 **0**

SMP-22-010

- events, using Collins-Soper frame
- $\rightarrow A_{FB} = 3/8A_4 \rightarrow \text{near } m_Z \text{ depends on } \sin^2 \theta_{eff}^{\ell}$

EXTRACTION OF $\sin^2 \theta_{\text{eff}}^{\ell}$ **AT 13 TEV**

ANALYSIS STRATEGY

- Full Run 2 dataset, *pp* collisions at 13 TeV
- Different dilepton final states \rightarrow leverage dilution reduction at high $|y_{\ell\ell}|$

BACKGROUNDS & UNCERTAINTIES

Main backgrounds

- QCD multijets: sideband in data
- W + jets: simulation corrected with FF from data
- Other EW + top: from simulation

Systematic uncertainties

- Experimental: MC stat., efficiency, momentum calibration. backgrounds...
- <u>Theory</u>: QCD scales, $p_T^{\ell\ell}$ model, QED FSR, virtual EW, **PDFs**

SMP-22-010

Notable data/MC agreement in all the phase-space

ICHEP 2024 PRAGUE

EXTRACTION OF $\sin^2 \theta_{\text{eff}}^{\ell}$ **AT 13 TeV**

INTERPRETATION MODEL

- Baseline model: **POWHEG** MiNNLO + Pythia8 + PHOTOS
- Virtual EW corrections included with POWHEG Z_ew:
 - input renormalisation scheme $(G_{\mu}, m_Z, \sin^2 \theta_{\text{eff}}^{\ell})$
 - NLO weak + universal HO corrections
 - Complex mass scheme width

SMP-22-010

18 July 2024

EXTRACTION OF $\sin^2 \theta_{eff}^{\ell}$ AT 13 TeV

- Uncertainties dominated by PDF

	χ^2	bins	p(%)	$\sin^2 heta_{ m eff}^\ell$	stat	exp	theo	PDF	MC	bkg	eff
μμ	241.3	264	82.7	23146 ± 38	17	17	7	30	13	3	2
ee	256.7	264	59.8	23176 ± 41	22	18	7	30	14	4	5
eg	119.1	144	92.8	23257 ± 61	30	40	5	44	23	11	12
eĥ	104.6	144	99.3	23119 ± 48	18	33	9	37	14	10	16
$\ell\ell$	730.7	816	98.4	23157 ± 31	10	15	9	27	8	4	6

18 July 2024

12

SUMMARY

PHENOMENOLOGIST POINT OF VIEW

- **Feedback** experiment ↔ theory fundamental
- Entered the N³LO era for both ME calculations and PDF determinations
- **Precise PDFs determination** becoming í 🔴 more and more **important**

EXPERIMENTALIST POINT OF VIEW

- Many recent measurements already reached (surpassed) the LEP precision era
- **Refine techniques** and **understand** of **detector** at high level
- Many **new results** in the **pipeline**: stay tuned!

DRELL-YAN MEASUREMENTS IMPORTANT ASSETS FOR THE LHC PHYSICS PROGRAM

