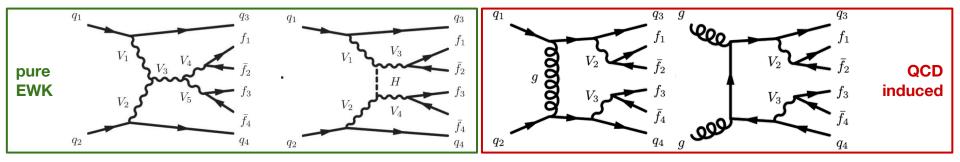


Vector boson scattering results in CMS

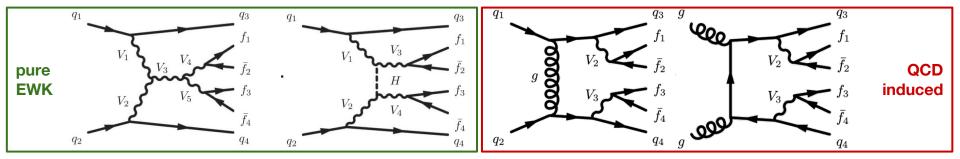
Andrea Piccinelli On behalf of the CMS Collaboration


ICHEP 2024 - July 20th, 2024 @ Prague

What is VBS?

What is VBS?

- Scattering of two Vector Bosons (V = W, Z, γ)
 - Triple and Quartic Gauge Couplings (TGC/QGC)
- Three possible contributions (at LO)
 - pure EWK $O(\alpha_{EW}^{6})$ signal
 - \circ QCD-induced $O(\alpha_{EW}^4 \alpha_S^2)$ background


What is VBS?

Scattering of two Vector Bosons (V = W, Z, γ)

Triple and Quartic Gauge Couplings (TGC/QGC)

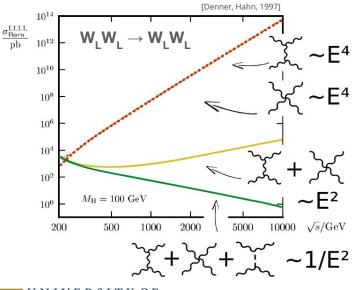
- Three possible contributions (at LO)
 - pure EWK $O(\alpha_{EW}^{6})$ signal
 - \circ QCD-induced $O(\alpha_{EW}^4 \alpha_S^2)$ background

- Peculiar experimental signature
 - 2 very energetic forward-backward jets: VBS jets
 - 4 fermions coming from the scattered Vs
- Main background due to non prompt leptons
 - QCD-induced jets reconstructed as leptons

CMS Experiment at the LHC, CERN Data recorded: 2016-Jul-08 23:47:39.259242 GMT Run / Event / LS: 276525 / 2665335317 / 1561

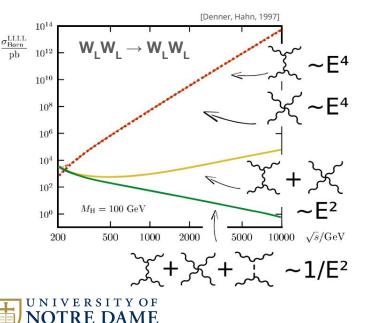
Candidate VBS event

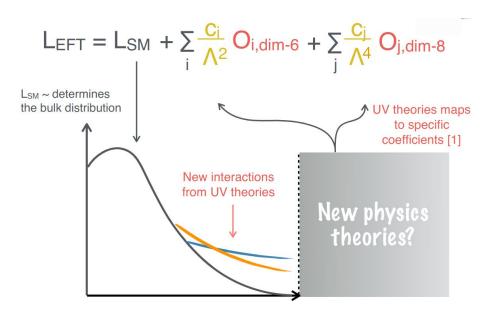
Andrea Piccinelli - ICHEP2024 @ Prague (July 20th, 2024)


VBS jet

Why study VBS?

Why study VBS?


- Key process to probe EW Symmetry Breaking
 - Higgs-like field necessary to preserve unitarity
 - Only investigable in VV scattering
 - Complimentary to Higgs-sector studies
- General test of the EW sector in SM
- Background wrt other signals with similar final state



Why study VBS?

- Key process to probe EW Symmetry Breaking
 - Higgs-like field necessary to preserve unitarity
 - Only investigable in VV scattering
 - Complimentary to Higgs-sector studies
- General test of the EW sector in SM
- Background wrt other signals with similar final state

- Higgs affecting VBS processes \rightarrow **New Physics!**
 - Suitable to investigate indirect NP effects
 - anomalous Triple/Quartic Gauge Coupling (aTGC/aQGC)
 - Model-independent EFT approach
 - Direct search for new resonances

VBS measurements in CMS

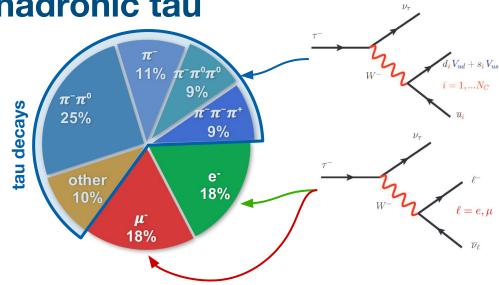
- **Big effort** to investigate VBS processes with full Run-II dataset
 - Fiducial and differential x-sections
 - Indirect search for New Physics
- Several final state analyzed
 - \circ Fully-leptonic \rightarrow very clean
 - $\circ~$ Semileptonic/fully-hadronic \rightarrow sensitive to aQGCs
 - $\circ~$ Photonic \rightarrow clean, but with larger background

VBS measurements in CMS

- **Big effort** to investigate VBS processes with full Run-II dataset
 - Fiducial and differential x-sections
 - Indirect search for New Physics
- Several final state analyzed
 - \circ Fully-leptonic \rightarrow very clean
 - $\circ~$ Semileptonic/fully-hadronic \rightarrow sensitive to aQGCs
 - \circ Photonic \rightarrow clean, but with larger background

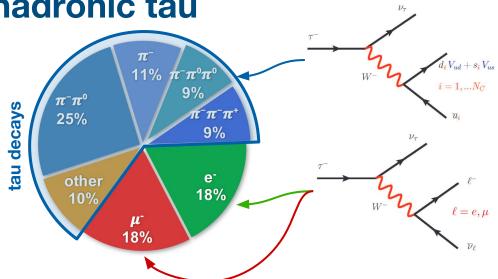
- Outstanding results with the full Run-II dataset
 - Scattering W[±]W[±] with one hadronic tau -<u>SMP-22-008</u>
 - Semileptonic WV scattering <u>SMP-20-013</u>
 - High-mass $\gamma\gamma \rightarrow WW/ZZ$ production -<u>SMP-21-014</u>
 - Leptonic Wγ scattering <u>SMP-21-011</u>
 - Leptonic W⁺W⁻ scattering <u>SMP-21-001</u>
 - Zγ scattering <u>SMP-20-016</u>
 - Leptonic WZ scattering <u>SMP-20-014</u>
 - Polarized scattering W[±]W[±] <u>SMP-20-006</u>

VBS measurements in CMS

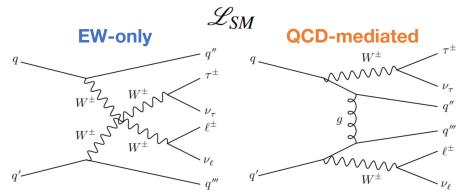

- **Big effort** to investigate VBS processes with full Run-II dataset
 - Fiducial and differential x-sections
 - Indirect search for New Physics
- Several final state analyzed
 - \circ Fully-leptonic \rightarrow very clean
 - \circ Semileptonic/fully-hadronic \rightarrow sensitive to aQGCs
 - Photonic \rightarrow clean, but with larger background

- Outstanding results with the full Run-II dataset
 - Scattering W[±]W[±] with one hadronic tau -<u>SMP-22-008</u>
 - Semileptonic WV scattering <u>SMP-20-013</u>
 - High-mass γγ→WW/ZZ production -<u>SMP-21-014</u>
 - Leptonic Wγ scattering <u>SMP-21-011</u>
 - Leptonic W⁺W⁻ scattering <u>SMP-21-001</u>
 - Zγ scattering <u>SMP-20-016</u>
 - Leptonic WZ scattering <u>SMP-20-014</u>
 - Polarized scattering W[±]W[±] <u>SMP-20-006</u>

Scattering W[±]W[±] with one hadronic tau CMS-SMP-22-008 – Overview


- Tau lepton decaying in hadrons (first time ever!)
- Main background: jets faking ℓ or $\tau_h (\ell = e, \mu)$
- 137 fb⁻¹ Runll dataset explored

Scattering W[±]W[±] with one hadronic tau CMS-SMP-22-008 – Overview


- Tau lepton decaying in hadrons (first time ever!)
- Main background: jets faking ℓ or $\tau_h (\ell = e, \mu)$
- 137 fb⁻¹ Runll dataset explored
- Measurement of SM contributions



Scattering W[±]W[±] with one hadronic tau CMS-SMP-22-008 – Overview

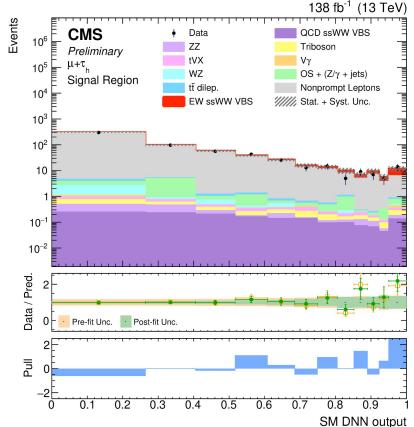
- Tau lepton decaying in hadrons (first time ever!)
- Main background: jets faking ℓ or $\tau_{_h}\,(\ell$ = e, $\mu)$
- 137 fb⁻¹ Runll dataset explored
- Measurement of SM contributions
- Indirect new physics effects with EFT
 - Operators with different dimensions acting on vertices
- Ad-hoc DNN models for both investigations

Andrea Piccinelli - ICHEP2024 @ Prague (July 20th, 2024)

au decays

Scattering W[±]W[±] with one hadronic tau SM measurements

- Simultaneous fit in SR + 2 CRs for both eτ_h and μτ_h channels
 DNN output distributions as quantity to fit
- dileptonic ttbar and opposite-sign yield adjusted with dedicated CRs in the fit


Scattering W[±]W[±] with one hadronic tau SM measurements

- Simultaneous fit in SR + 2 CRs for both eτ_h and μτ_h channels
 DNN output distributions as quantity to fit
- dileptonic ttbar and opposite-sign yield adjusted with dedicated CRs in the fit

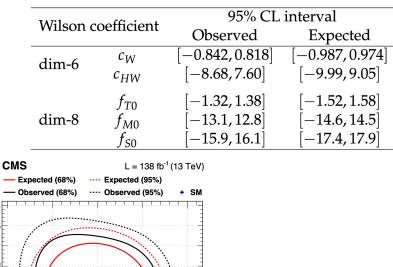
Two measurements performed:

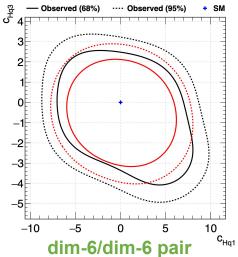
 $\begin{array}{ll} \mbox{1. signal strength for pure EW} \\ \mbox{1.44}^{+0.63}_{-0.56} \ (1.00^{+0.60}_{-0.53}) & (\sigma_{th}^{} = 28.7 \ \mbox{fb}) \\ \mbox{2. signal strength for EW + QCD} \\ \mbox{1.43}^{+0.60}_{-0.54} \ (1.00^{+0.57}_{-0.51}) & (\sigma_{th}^{} = 22.3 \ \mbox{fb}) \\ \end{array}$

Sensitivity affected by statistical uncertainty First evidence of VBS with hadronic tau!

Scattering W[±]W[±] with one hadronic tau EFT results

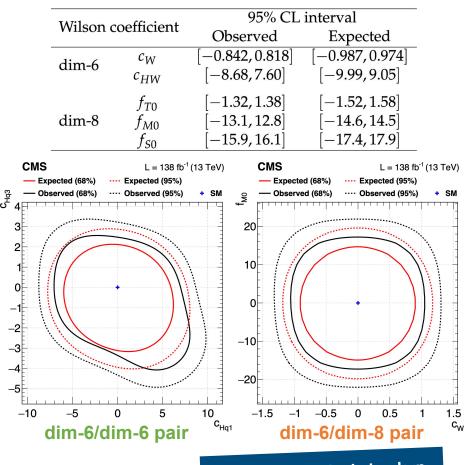
No deviation from SM expectations


- 11 dim-6 + 9 dim-8 EFT operators
- 1D limits on EFT coefficients
- First dim-6 investigation with a VBS process


Wilcom	oefficient	95% CL interval			
vviison c	benncient	Observed	Expected		
dim-6	c _W	[-0.842, 0.818]	[-0.987, 0.974]		
unn-o	c_{HW}	[-8.68, 7.60]	[-9.99,9.05]		
	f_{T0}	[-1.32, 1.38]	[-1.52, 1.58]		
dim-8	f_{M0}	[-13.1, 12.8]	[-14.6, 14.5]		
	f_{S0}	[-15.9, 16.1]	[-17.4, 17.9]		

Scattering W[±]W[±] with one hadronic tau EFT results

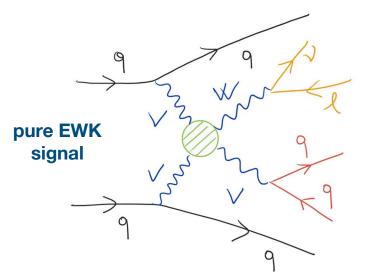
- No deviation from SM expectations
- 11 dim-6 + 9 dim-8 EFT operators
- 1D limits on EFT coefficients
- First dim-6 investigation with a VBS process
- 2D limits on EFT coefficients
- Correlation effects between dim-6 operators



Scattering W[±]W[±] with one hadronic tau EFT results

- No deviation from SM expectations
- 11 dim-6 + 9 dim-8 EFT operators
- 1D limits on EFT coefficients
- First dim-6 investigation with a VBS process
- 2D limits on EFT coefficients
- Correlation effects between dim-6 operators
- First study of EFT operators with different dim.
- Addition of a competitive EFT operator reduces the sensitivity to individual operator
 - higher effect on the least relevant operators
 - dim-6 affected when dim-8 is competitive
 - dim-8 always affected by the presence of dim-6

Take-home message: don't forget the impact of operators with different dimensions!

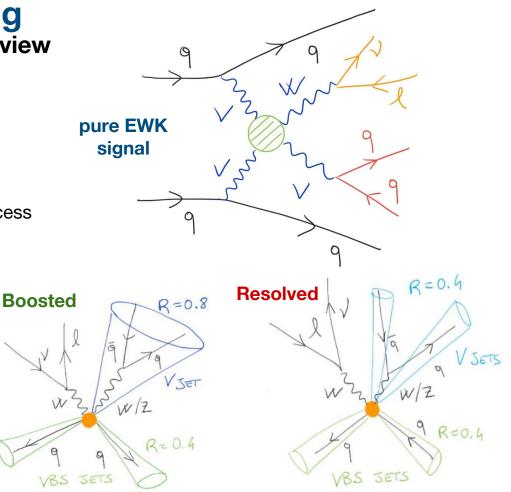


Andrea Piccinelli - ICHEP2024 @ Prague (July 20th, 2024)

7

Semileptonic WV scattering Phys. Lett. B 834 (2022) 137438 - Overview

- First evidence of the SM process at LHC!
 - Performed with the full Runll dataset (137 fb⁻¹)
- WV scattering in semileptonic channel
 - \circ V \rightarrow jets, W \rightarrow ev or μv
 - irreducible contribution from QCD-induced process



Semileptonic WV scattering Phys. Lett. B 834 (2022) 137438 - Overview

- First evidence of the SM process at LHC!
 - Performed with the full Runll dataset (137 fb⁻¹)
- WV scattering in semileptonic channel
 - \circ V \rightarrow jets, W \rightarrow ev or μv
 - $\circ~$ irreducible contribution from QCD-induced process
- Resolved and boosted hadronic decay regimes
 - Events separately categorized
- Big efforts to properly estimate backgrounds (more in backup)
 - DNN signal-vs-background discriminator in both categories
 - Dedicated Control Regions to constrain main sources

NIVERSITY OF I**OTRE DAME**

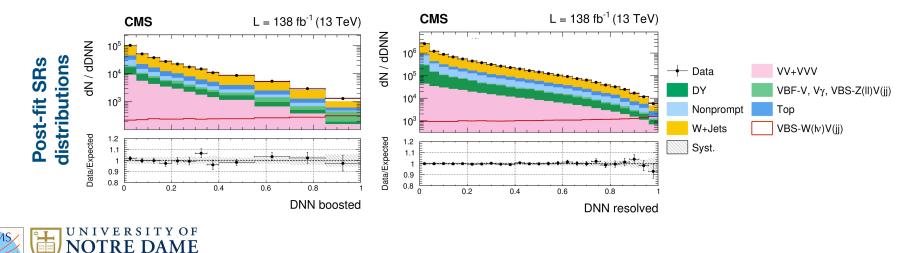
Semileptonic WV scattering Statistical analysis

Simultaneous fits in all the regions

- Performed both for pure EWK and EWK+QCD signals
- 2D fit of EWK and QCD signal strengths

Semileptonic WV scattering Statistical analysis

Simultaneous fits in all the regions

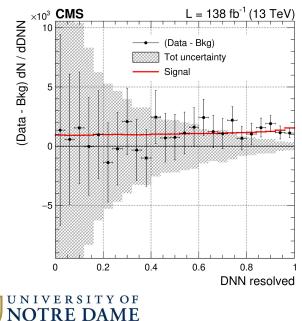

- Performed both for pure EWK and EWK+QCD signals
- 2D fit of EWK and QCD signal strengths

Signal Regions

• Fit to DNN shape category-wise

Control Regions

- **W+jets**: fit to normalization in CR correction bins
- ttbar: fit to overall normalization in CRs



Semileptonic WV scattering Results – observations!

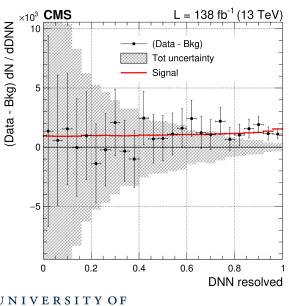
EWK

- Inclusive signal strength
 - $\mu_{EWK} = 0.85 \pm 0.12 (ext{stat})^{+0.19}_{-0.17} (ext{syst})$
- Fiducial cross section measurement

 $\sigma_{\rm EWK} = 1.90^{+0.53}_{-0.46} \ {\rm pb}$

Semileptonic WV scattering Results – observations!

EWK

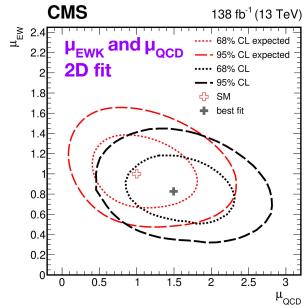

• Inclusive signal strength

 $\mu_{EWK} = 0.85 \pm 0.12 ({
m stat})^{+0.19}_{-0.17} ({
m syst})$

NOTRE DAME

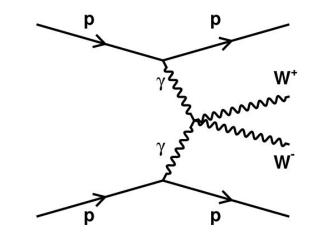
• Fiducial cross section measurement

 $\sigma_{\rm EWK} = 1.90^{+0.53}_{-0.46} \ {\rm pb}$


EWK + QCD

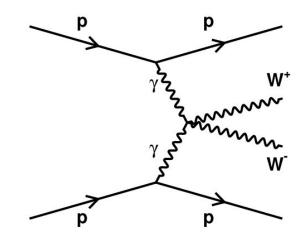
Inclusive signal strength

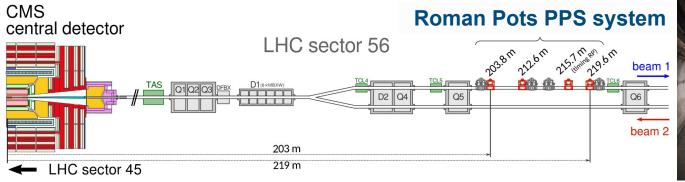
 $\mu_{EWK+QCD} = 0.97 \pm 0.06({
m stat})^{+0.19}_{-0.21}({
m syst})$


• Fiducial cross section measurement

$$\sigma_{\text{EWK+QCD}} = 16.4^{+3.5}_{-2.8} \text{ pl}$$

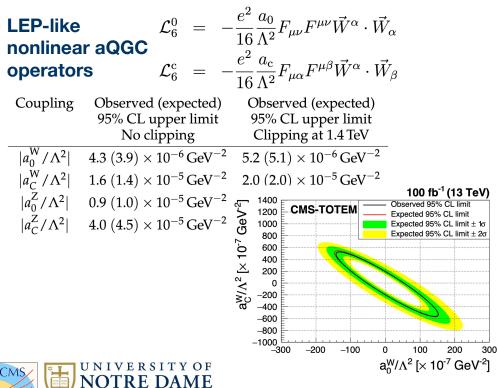
High-mass $\gamma\gamma \rightarrow WW/ZZ$ production JHEP 2307 (2023) 229 – overview

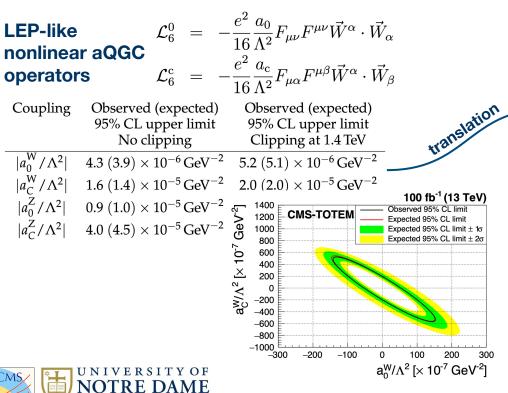

- $\gamma\gamma \rightarrow WW/ZZ$ events at high mass smoking guns for new physics
 - Boosted W/Z hadronic decays (1 jet per boson)
 - New physics effects modeled with aQGC effects



High-mass $\gamma\gamma \rightarrow WW/ZZ$ production JHEP 2307 (2023) 229 – overview

- $\gamma\gamma \rightarrow WW/ZZ$ events at high mass smoking guns for new physics
 - Boosted W/Z hadronic decays (1 jet per boson)
 - New physics effects modeled with aQGC effects
- Protons are kept intact from γγ scattering
 - Four body ppWW/ppZZ system fully reconstructed at 13 TeV with the TOTEM Proton Precision Spectrometer (PPS)
 - Combined CMS + TOTEM 100 fb⁻¹ RunII dataset

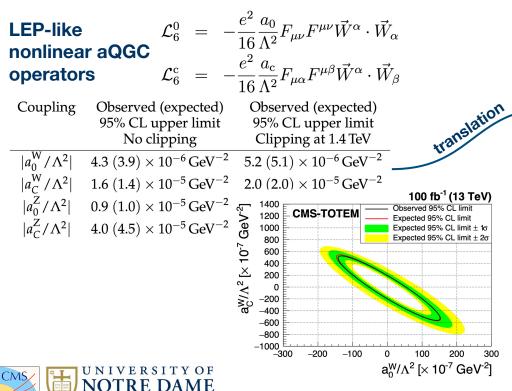



High-mass \gamma\gamma \rightarrow WW/ZZ production Sensitivity to SM production and aQGCs

- Clipping applied to preserve unitarity bounds
 - Smaller impact wrt only-CMS similar analyses

High-mass \gamma\gamma \rightarrow WW/ZZ production Sensitivity to SM production and aQGCs

- Clipping applied to preserve unitarity bounds
 - $\circ~$ Smaller impact wrt only-CMS similar analyses

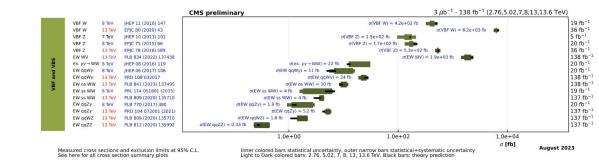


Linear EFT aQGC modeling (Éboli basis)

	Coupling	Observed (expected) 95% CL upper limit No clipping	Observed (expected) 95% CL upper limit Clipping at 1.4 TeV
-	$ f_{M,0}/\Lambda^4 $	$66.0 (60.0) \mathrm{TeV}^{-4}$	79.8 (78.2) TeV ⁻⁴
	$\left f_{M,1}/\Lambda^4\right $	245.5 (214.8) TeV^{-4}	$306.8 (306.8) \mathrm{TeV}^{-4}$
>	$ f_{M,2}/\Lambda^4 $	$9.8~(9.0)~{ m TeV^{-4}}$	$11.9 \; (11.8) \mathrm{TeV}^{-4}$
	$ f_{M,3}/\Lambda^4 $	73.0 (64.6) TeV $^{-4}$	91.3 (92.3) TeV^{-4}
	$\left f_{M,4}/\Lambda^4\right $	$36.0(32.9)\mathrm{TeV}^{-4}$	$43.5~(42.9)~{\rm TeV}^{-4}$
	$\left f_{M,5}/\Lambda^4\right $	$67.0~(58.9)\mathrm{TeV}^{-4}$	$83.7 (84.1) \mathrm{TeV}^{-4}$
	$\left f_{M,7}/\Lambda^4\right $	$490.9~(429.6)~{\rm TeV}^{-4}$	$613.7~(613.7)~{ m TeV^{-4}}$

High-mass \gamma\gamma \rightarrow WW/ZZ production Sensitivity to SM production and aQGCs

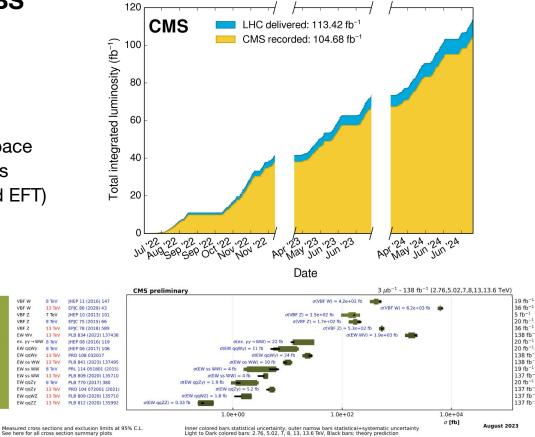
- Clipping applied to preserve unitarity bounds
 - $\circ~$ Smaller impact wrt only-CMS similar analyses


Linear EFT aQGC modeling (Éboli basis)

Coupling	Observed (expected) 95% CL upper limit No clipping	Observed (expected) 95% CL upper limit Clipping at 1.4 TeV
$\left f_{M,0}/\Lambda^4\right $	$66.0~(60.0)~{\rm TeV^{-4}}$	79.8 (78.2) TeV $^{-4}$
$\left f_{M,1}/\Lambda^4\right $	$245.5~(214.8)~{ m TeV}^{-4}$	$306.8 (306.8) \mathrm{TeV}^{-4}$
$ f_{M,2}/\Lambda^4 $	$9.8~(9.0)~{ m TeV^{-4}}$	11.9 (11.8) TeV $^{-4}$
$\left f_{M,3}/\Lambda^4\right $	73.0 (64.6) TeV $^{-4}$	91.3 (92.3) TeV $^{-4}$
$\left f_{M,4}/\Lambda^4\right $	$36.0(32.9)\mathrm{TeV}^{-4}$	$43.5~(42.9)~{\rm TeV}^{-4}$
$\left f_{M,5}/\Lambda^4\right $	$67.0~(58.9)\mathrm{TeV}^{-4}$	$83.7~(84.1)~{ m TeV}^{-4}$
$\left f_{M,7}/\Lambda^4\right $	490.9 (429.6) TeV^{-4}	613.7 (613.7) TeV^{-4}

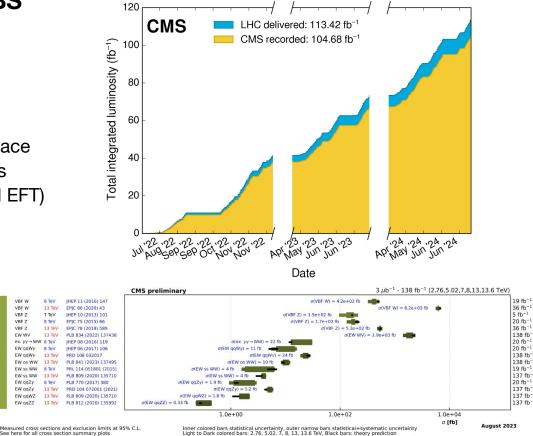
Upper bounds on SM fiducial x-sections $\sigma(pp \to pWWp)_{0.04 < \xi < 0.20, m > 1000 \text{ GeV}} < 67(53^{+34}_{-19}) \text{ fb}$ $\sigma(pp \to pZZp)_{0.04 < \xi < 0.20, m > 1000 \text{ GeV}} < 43(62^{+33}_{-20}) \text{ fb}$

A bright future ahead of us! CMS perspective on future of the VBS


- Extensive VBS program with RunII dataset
 - Plenty of observations and evidences
 - Creative strategies to cover a wide phase space
 - Systematic searches for indirect new physics
 - Solid basis for a grand combination (SM and EFT)

A bright future ahead of us! CMS perspective on future of the VBS

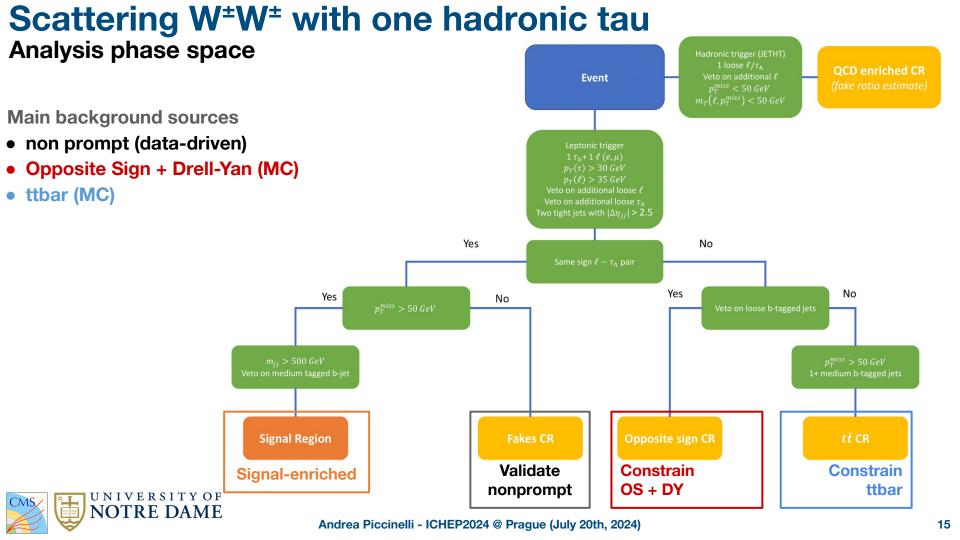
- Extensive VBS program with RunII dataset
 - Plenty of observations and evidences
 - Creative strategies to cover a wide phase space
 - Systematic searches for indirect new physics
 - Solid basis for a grand combination (SM and EFT)
- Run3 data ready to be scrutinized!
 - VBS investigations will benefit from the increased recorded luminosity
 - Target specific boson polarization states
 - Thorough scrutiny of deviations from SM within the EFT framework



A bright future ahead of us! CMS perspective on future of the VBS

- Extensive VBS program with RunII dataset
 - Plenty of observations and evidences 0
 - Creative strategies to cover a wide phase space Ο
 - Systematic searches for indirect new physics 0
 - Solid basis for a grand combination (SM and EFT) Ο
- Run3 data ready to be scrutinized!
 - VBS investigations will benefit from Ο the increased recorded luminosity
 - Target specific boson polarization states 0
 - Thorough scrutiny of deviations Ο from SM within the EFT framework

IVERSITYO


Thank you!

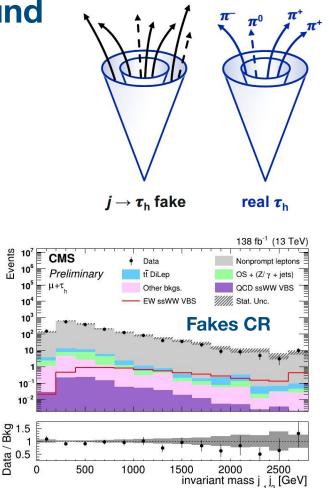
See here for all cross section summary plot

Additional slides

Estimation of nonprompt ℓ/τ_h background

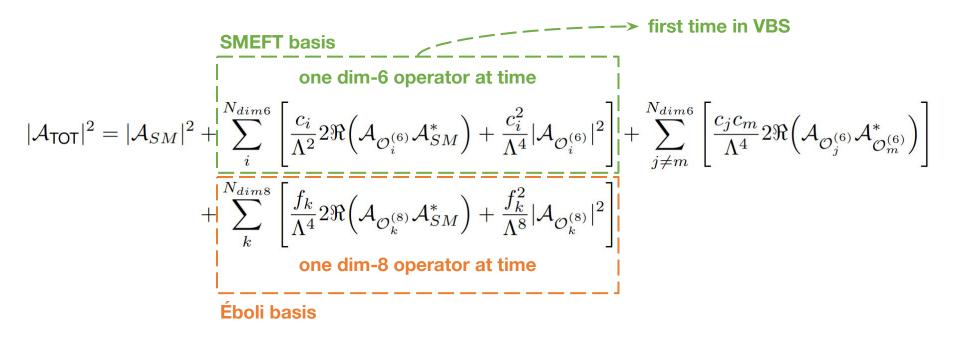
- Hadronic jets reconstructed as e, μ , or τ_h jets \rightarrow fake τ_h outweighing contribution
- Due to QCD multijet, W+jets, Drell-Yan and ttbar pair productions with at least one jet in the final state

Data-driven "fakeable" method (for e, μ , τ_h)

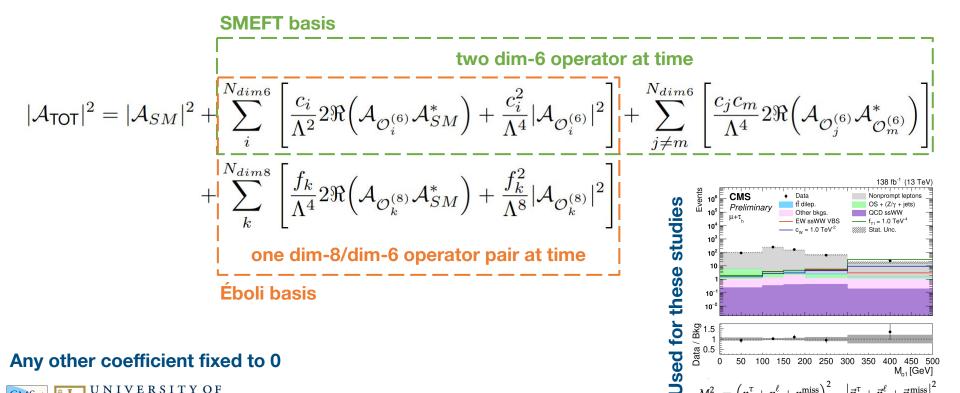

- Fake Ratio as measure of the probability a (real) jet is reconstructed as lepton (jet faking lepton) → tight (loose) reconstructed lepton
- Estimated in the QCD-enriched region as lepton loose-to-tight ratio

$$\epsilon_{fake} (\mathsf{p}_{\mathsf{T}}, \mathsf{\eta}) = \mathsf{N}_{\mathsf{tight}} / \mathsf{N}_{\mathsf{loose}}$$

• Use Fake Ratio to extrapolate estimate in SR with event-wise


 $w_i = \frac{\epsilon_{fake}(p_{Ti}, \eta_i)}{1 - \epsilon_{fake}(p_{Ti}, \eta_i)}$

• Estimate validated in the Fakes CR


Scattering W[±]W[±] with one hadronic tau EFT investigations – 1D

Any other coefficient fixed to 0

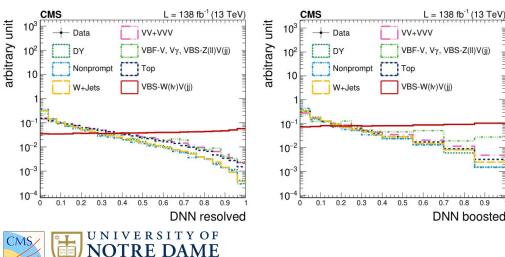
Scattering W[±]W[±] with one hadronic tau **EFT** investigations – 2D

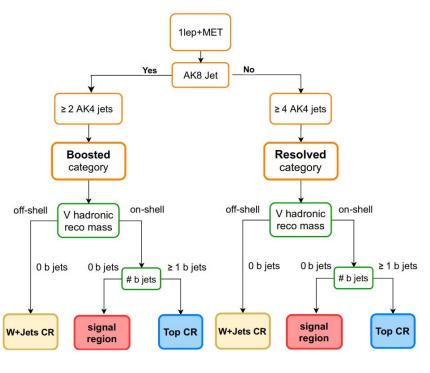
Any other coefficient fixed to 0

Data . 0

M₋₁[GeV]

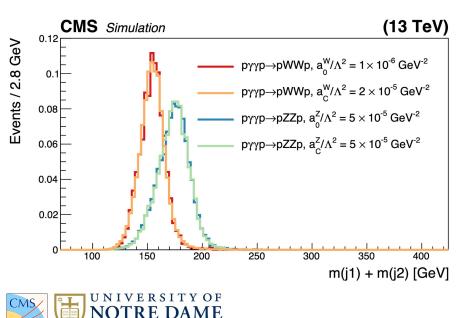
 $M_{\circ 1}^2 = \left(p_{\rm T}^{ au} + p_{\rm T}^{\ell} + p_{\rm T}^{
m miss}
ight)^2 - \left| ec{p}_{
m T}^{ au} + ec{p}_{
m T}^{\ell} + ec{p}_{
m T}^{
m miss}
ight|^2$


Scattering W[±]W[±] with one hadronic tau 1D EFT limits


EFT limits	Mileon coefficient	1σ CL interval(s)		2σ CL interval	
	Wilson coefficient	Expected	Observed	Expected	Observed
extracted with	$c_{ll}^{(1)}$	$[-12.9, -8.03] \cup [-2.95, 1.91]$	[-11.6, 0.045]	[-14.6, 3.53]	[-13.5, 2.11]
	$c^{(1)}$	[-0.501, 0.576]	[-0.341, 0.416]	[-0.742, 0.818]	[-0.605, 0.681]
dim-6 DNN output	c_W	[-0.681, 0.669]	[-0.513, 0.481]	[-0.987, 0.974]	[-0.842, 0.818]
distributions	c_{HW}	[-7.00, 6.09]	[-5.48, 4.31]	[-9.99,9.05]	[-8.68, 7.60]
1	c _{HWB}	[-41.7,69.6]	[30.7, 89.2]	[-66.6,96.4]	[-49.7, 110]
i	dim-6 $c_{H\square}$	[-16.6, 18.1]	[-12.0, 14.0]	[-24.7,26.3]	[-20.9, 22.7]
	c_{HD}	[-24.6, 34.7]	[-15.3, 31.5]	[-38.2, 48.8]	[-31.4, 45.5]
	$c_{Hl}^{(1)}$	[-28.8, 29.9]	[-38.2, 39.5]	[-49.4, 49.7]	[-69.3, 68.3]
	$c_{Hl}^{(1)} \ c_{Hl}^{(3)}$	$[-1.43, 2.23] \cup [5.88, 9.54]$	[-0.045, 8.58]	[-2.64, 10.8]	[-1.59, 9.94]
	$c_{Hq}^{(1)}$	[-4.53, 4.42]	[-3.27, 3.44]	[-6.56, 6.44]	[-5.55, 5.60]
I L	$_{}c_{Hq}^{(3)}$	[-2.39, 1.37]	[-1.88,0.705]	[-3.24, 2.16]	[-2.82, 1.61]
extracted with	f_{T0}	[-1.02, 1.08]	[-0.774, 0.842]	[-1.52, 1.58]	[-1.32, 1.38]
dim-8 DNN output	f_{T1}	[-0.426, 0.480]	[-0.319, 0.381]	[-0.640, 0.695]	[-0.552, 0.613]
	f_{T2}	[-1.15, 1.37]	[-0.851, 1.12]	[-1.75, 1.98]	[-1.51, 1.76]
distributions	f_{M0}	[-9.89, 9.74]	[-8.07,7.70]	[-14.6, 14.5]	[-13.1, 12.8]
	dim-8 f_{M1}	[-12.5, 13.3]	[-9.54, 11.15]	[-18.7, 19.6]	[-16.4, 17.7]
	f_{M7}	[-20.3, 19.2]	[-17.6, 15.3]	[-29.9, 28.8]	[-27.6, 25.8]
1	f_{S0}	[-11.6, 12.0]	[-9.60, 9.82]	[-17.4, 17.9]	[-15.9, 16.1]
	f_{S1}	[-37.4, 38.8]	[-40.9, 41.3]	[-57.2,58.6]	[-60.9, 61.8]
	f_{S2}	[-37.4, 38.8]	[-40.9, 41.3]	[-57.2, 58.6]	[-60.9, 61.8]

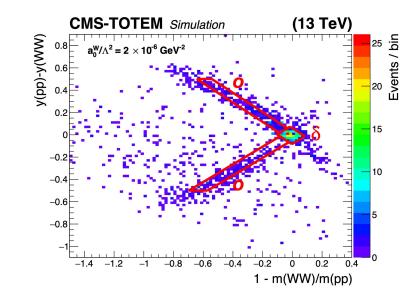
Semileptonic WV scattering – background estimation

- W + jets associated production
 - Differential data-driven corrections to predictions from simulation 0
 - Binned wrt to leptonic W p_⊤ (**both** categories) and leading VBS jet p_{τ} (only **resolved** category)
- ttbar pair production
 - Reduced with veto on b-tagged jets
- Nonprompt leptons
 - Estimated with the data-driven *fakeable* method 0
- **DNN** in both categories as **signal vs bkg discriminator**



.....

High-mass $\gamma\gamma \rightarrow WW/ZZ$ production Event categorization


WW vs ZZ separation

- CMS boosted jet pair with $m_{ii} > 1126 \text{ GeV}$
- Combination of jet masses provides good separation between pWWp and pZZp
 - $\circ~$ Cut independent from specific aQGC scenario

Signal regions

- Rapidity **y** and invariant mass **m** for pp and diboson systems correlated for the signals
- 2 jet-matched protons \rightarrow region δ
- 1 jet-matched proton \rightarrow region o

