

Multiboson production in CMS

Sen Deng On behalf of the CMS Collaboration

ICHEP 2024 Prague | 20 July 2024

Sen Deng

ICHEP 2024 PRAGUE

Why study multiboson?

Multiboson physics provide precise measurements of fundamental SM parameters

- Portal to New physics
 - Background for Higgs analysis or resonant searches
 - Indirect search through anomalous couplings
- A wide range of processes
 - Diboson, triboson, vector boson scattering

Multiboson measurement in CMS

• Diboson production

- WW inclusive @ 13.6 TeV <u>arXiv:2406.05101</u>
- WZ cross section @ 13.6 TeV <u>CMS-PAS-SMP-24-005</u> NEW FOR ICHEP
- $Z(\rightarrow \nu \bar{\nu})\gamma$ production @ 13 TeV <u>CMS-PAS-SMP-22-009</u>

• Triboson production

- Observation of WWγ production @ 13 TeV <u>Phys. Rev. Lett. 132 (2024) 121901</u>
- WZγ production @ 13 TeV <u>CMS-PAS-SMP-22-018</u> NEW FOR ICHEP

• Vector boson scattering

- See presentations from Andrea Piccinelli

W⁺W⁻ inclusive @ 13.6 TeV [34.8 fb⁻¹]

arXiv:2406.05101, submitted to PLB, CMS-SMP-24-001 Overview

- First Measurement of opposite-sign (OS) WW(+jets) production at $\sqrt{s} = 13.6 \text{ TeV}$
 - 2022 CMS Run 3 data → \mathcal{L} = 34.8 fb⁻¹
- Inclusive and normalized cross-section measurement

- Events selected with one electron and one muon (OS) and categorized into WW Signal region (SR) + 6 Control regions (CRs)
- 3 production processes
 - qq→WW, gg→WW (corrected by a factor 1.4 for NLO/LO)
 - $H \rightarrow WW$ (background for this analysis)

W⁺W⁻ inclusive @ 13.6 TeV [34.8 fb⁻¹]

arXiv:2406.05101, submitted to PLB, CMS-SMP-24-001 results

- Inclusive cross section
 - Extracted from simultaneous Maximum Likelihood fits over SR+CRs with 1 POI
 - $\sigma^{obs} =$ 125.7 \pm 2.3 (stat.) \pm 4.8 (syst.) \pm 1.8 (lumi.) pb
 - Compatible with predictions: $\sigma^{exp} = 125.8 \pm 3.7 \text{ pb}$ (QCD NNLO and EW NLO from MATRIX v2.1.0)
- Comparison of normalized fiducial cross sections

Observable Requirement Direct decay of a W boson Lepton origin Lepton definition Dressed-leptons ($e^{\pm}\mu^{\mp}$) $v_{\rm T}^{\ell \max} > 25 \,{\rm GeV}$ Leading lepton $p_{\rm T}$ $p_{\rm T}^{\ell\,\rm min} > 20\,{\rm GeV}$ Trailing lepton $p_{\rm T}$ $|\eta|$ of leptons $|\eta| < 2.5$ $m_{\ell\ell} > 85 \,\mathrm{GeV}$ Dilepton mass Jet $p_{\rm T}$ $p_{\rm T}^{\rm J} > 30 \, {\rm GeV}$ $|\eta|$ of jets $|\eta^{j}| < 2.5$ $\Delta R(\mathbf{j}, \ell) > 0.4$ Jet-lepton removal Definition of the fiducial region

WZ cross section @ 13.6 TeV [34.7 fb^{-1}]

CMS-PAS-SMP-24-005 Overview

NEW FOR ICHEP

• First measurement of WZ production at \sqrt{s} = 13.6 TeV

34.7 fb⁻¹ (13.6 TeV)

- 2022 CMS Run 3 data → \mathcal{L} = 34.7 fb⁻¹

- Experimentally: in its **multileptonic final state** $(W^{\pm} \rightarrow \ell^{\pm} \nu, Z \rightarrow \ell^{+} \ell^{-}):$
 - One of the cleanest diboson channels at the LHC (85% purity of signal over background after selections).
 - Reasonably high statistical power.

—

6

 $\sim\sim\sim\sim\sim$

WZ cross section @ 13.6 TeV [34.7 fb^{-1}]

CMS-PAS-SMP-24-005 Results

NEW FOR ICHEP

- The WZ production cross section is measured in a phase space, defined around a 30 GeV window around the Z mass
- The results are shown to be in good agreement with the NNLO QCD x NLO EWK calculations (from MATRIX).

Sen Deng

Z(→ $ν\bar{ν}$)γ @ 13 TeV [138 fb⁻¹]

CMS-PAS-SMP-22-009 Overview

- Fiducial and differential cross section measurement
- Limits on anomalous Neutral Triple Gauge Coupling (aNTGC) $h_3^{Z,\gamma}$ and $h_4^{Z,\gamma}$
- BDT algorithm to identify high- $p_{\rm T}$ photons (92% efficiency)
- Exact 1 high- $p_{\rm T}$ photon + $E_{\rm T}^{\rm miss}$

10²

10

10⁻¹

 10^{-2}

200

Events/GeV

CMS Simulation Preliminary

600

800

Generator-level photon \underline{p} (GeV)

1000 1200

1400

138 fb⁻¹ (13 TeV)

- True photons backgrounds:
 - γ +jets, VV (from MC), W($\rightarrow \ell \nu$) γ (from CR to data)
- Fake photons backgrounds:
 - $e \rightarrow \gamma$, jet $\rightarrow \gamma$ (data-driven)
 - Particles interacting with ECAL barrel's electronics (data-driven)
 - Beam Halo in ECAL endcaps (data-driven)

Z(→ $ν\bar{ν}$ **)γ @ 13 TeV [138 fb**⁻¹]

CMS-PAS-SMP-22-009 Results

• Fiducial (left) and differential cross section (right) (fb)

Region	Measured	NLO (Madgraph5)	NNLO (MATRIX)
Barrel	$16.74^{+1.05}_{-0.99}$	$19.61\substack{+0.73 \\ -0.69}$	$19.33^{+0.27}_{-0.33}$
$\frac{ \eta < 1.4442}{\text{Endcaps}}$. 0.50		. 0.07
$1.4442 < \eta < 2.5$	$7.84^{+0.76}_{-0.70}$	$6.45_{-0.31}^{+0.27}$	$6.21\substack{+0.07\\-0.09}$
Combination of barrel	$23.32^{+1.40}$	$26.07^{+0.96}$	$25.45^{+0.41}$
and endcaps	-1.32	_0.97	

• Limits on aNTGC

$p_{\rm T}$ -range (GeV)	Measured	NLO (Madgraph5)	NNLO (MATRIX)
225-275	$12.45\substack{+0.91\\-0.87}$	$12.88\substack{+0.42\\-0.49}$	$12.83\substack{+0.17\\-0.15}$
275-350	$6.95\substack{+0.60 \\ -0.57}$	$8.14\substack{+0.31 \\ -0.30}$	$7.89\substack{+0.16 \\ -0.15}$
350-450	$2.61^{+0.35}_{-0.33}$	$3.34^{+0.17}_{-0.11}$	$3.22^{+0.07}_{-0.06}$
450-600	$1.08\substack{+0.21 \\ -0.20}$	$1.26\substack{+0.08 \\ -0.05}$	$1.22^{+0.02}_{-0.02}$
600-800	$(2.82^{+0.10}_{-0.09}) imes 10^{-1}$	$(3.45^{+0.26}_{-0.19}) imes 10^{-1}$	$(3.31^{+0.07}_{-0.05}) imes 10^{-1}$
800-1500	$(0.92^{+0.05}_{-0.05}) imes 10^{-1}$	$(1.07^{+0.11}_{-0.12}) imes 10^{-1}$	$(9.09^{+0.20}_{-0.14}) imes 10^{-2}$

WWγ @ 13 TeV [138 fb⁻¹]

arXiv:2310.05164, PRL 132 (2024) 121901, CMS-SMP-22-006 overview

- **First observation** of WW γ : 5.6 σ (5.1 σ) obs. (exp.)
- Search for $H\gamma \rightarrow WW\gamma$
 - Extraction of limits on higgs couplings with light quarks
- Data-driven method for estimating background processes with non-prompt lepton/photon
- Focusing on fully leptonic final state: WW $\gamma \rightarrow e \nu_e \ \mu \nu_{\nu} \ \gamma$

WWγ @ 13 TeV [138 fb⁻¹]

arXiv:2310.05164, PRL 132 (2024) 121901, CMS-SMP-22-006 results

- Measured fiducial cross section: 5.9 \pm 0.8 (stat.) \pm 0.8 (syst.) \pm 0.7 (modeling) fb
 - Theoretical predicted fiducial cross section (MadGraph5_aMC@NLO): **5.33** \pm **0.34** (scale) \pm **0.05** (PDF) fb
 - fiducial region defined by applying the signal selection at particle level, without the requirements on b jets and additional leptons
- Upper limits on the cross section and derived limits in terms of Yukawa coupling for Hγ production initiated by light quarks

Process	σ upper limits obs. (exp.) [fb]	$\kappa_{\rm q}$ limits obs. (exp.) at 95% C.L.	$\overline{\kappa}_{q}$ limits obs. (exp.) at 95% C.L.
$u\overline{u} \to H + \gamma \to e\mu\nu_e\nu_\mu\gamma$	86 (67)	$ \kappa_{\rm u} \le 16000 \ (13000)$	$ \overline{\kappa}_{\mathrm{u}} \leq 7.5 \ (6.1)$
$d\overline{d} \rightarrow H + \gamma \rightarrow e \mu \nu_e \nu_\mu \gamma$	72 (58)	$ \kappa_{\rm d} \le 17000 \ (14000)$	$ \overline{\kappa}_{\mathrm{d}} \leq 16.6 \ (14.7)$
$s\overline{s} \rightarrow H + \gamma \rightarrow e \mu \nu_e \nu_\mu \gamma$	66 (49)	$ \kappa_{\rm s} \le 1700 \ (1300)$	$ \overline{\kappa}_{\mathrm{s}} \leq 32.8$ (25.2)
$c\overline{c} \rightarrow H + \gamma \rightarrow e \mu \nu_e \nu_\mu \gamma$	88 (66)	$ \kappa_{\rm c} \le 190 \ (110)$	$ \overline{\kappa}_{ m c} \leq 43.2$ (25.0)

WZγ @ 13 TeV [138 fb⁻¹]

CMS-PAS-SMP-22-018 overview

NEW FOR ICHEP

- Measurement of WZγ production
- Limits on anomalous Quartic Gauge Coupling (aQGC)
- Limits on **photophobic axion-like particle** models

- Focusing on **fully leptonic final states** WZ $\gamma \rightarrow \ell^{\pm} \nu \, \ell'^{+} \ell'^{-} \gamma \, (\ell = e, \mu)$
- Data-driven method for estimating background processes with nonprompt lepton/photon. Validation is made with CRs
- Other backgrounds: Estimated by MC and constrained with the dedicated CR

WZγ @ 13 TeV [138 fb⁻¹]

CMS-PAS-SMP-22-018 Results

NEW FOR ICHEP

- Measured fiducial cross section: **5.48** \pm **0.95 (stat.)** \pm **0.57 (syst.)** \pm **0.10 (theo.) fb**
 - Theoretical predicted fiducial cross section (MadGraph5_aMC@NLO): 3.69 ± 0.19 (scale) ±
 0.15 (PDF) fb
 - Particle-level selection: $p_{\rm T}^{e,\mu,\gamma} > 15$ GeV, $|\eta^{e,\mu,\gamma}| < 2.5, m_Z$ between [60, 120] GeV
- Exclusion limits at the 95% CL for each aQGC coefficient

Sen Deng

Operators	Observed limits [TeV $^{-4}$]	Expected limits [TeV $^{-4}$]	Unitarity bound [TeV]
$F_{\rm T,0}/\Lambda^4$	[-2.60, 2.60]	[-2.52, 2.52]	1.32
$F_{\rm T,1}/\Lambda^4$	[-3.28, 3.24]	[-3.18, 3.14]	1.48
$F_{\rm T,2}/\Lambda^4$	[-7.15, 7.05]	[-6.95, 6.85]	1.35
$F_{\rm T.5}/\Lambda^4$	[-2.54, 2.56]	[-2.46, 2.50]	1,55
$F_{\rm T.6}/\Lambda^4$	[-3.18, 3.22]	[-3.08, 3.14]	1.61
$F_{\mathrm{T,7}}/\Lambda^4$	[-6.85, 7.05]	[-6.65, 6.85]	1,71
· · · ·			

- The observed (expected) significance of the WZγ signal is 5.4 (3.8) standard deviations
- Photophobic ALPs [<u>JHEP09(2018)028</u>], suppressed ALP to photon couplings at tree level
 - Only one free parameter f_a that directly determines the

ICHEP 2024 PRAGUE

Summary of multiboson production in CMS

- CMS has a strong and comprehensive program of multiboson measurements & Searches/Probes
 - Precision multiboson measurements
 - Observation of triboson processes
 - Beyond Standard Model extensions: Anomalous couplings, EFT, Higgs properties, ALP etc.
- Lots of opportunities with the Run-3 data coming in!
 - First measurement of opposite-sign WW(+jets) production at \sqrt{s} = 13.6 TeV

BACKUP

ZZ + jets @ 13 TeV [138 fb⁻¹]

arXiv:2404.02711, submitted to JHEP, CMS-SMP-22-001 overview

- Differential distributions & normalised differential cross-sections
- Fully leptonic final state (e, μ), Four isolated leptons from PV + contribution

- from FSR photon with $\Delta R(\ell, \gamma) < 0.5$
- 2 on-shell Z candidates built from OS, same flavor leptons
- $40 < m_{Z1} < 120 \text{ GeV}, 4 < m_{Z2} < 120 \text{ GeV}$
- $p_{\rm T}^{\rm jets}$ > 30 GeV and $\Delta R({\rm jet}, \ell/\gamma)$ > 0.4

ZZ + jets @ 13 TeV [138 fb⁻¹]

arXiv:2404.02711, submitted to JHEP, CMS-SMP-22-001

ICHEP 2024 PRAGUE

- All predictions describe well data at low mass
- Discrepancy at high mass mitigated with EW corrections

