Inclusive and differential top quark pair production from 5 to 13.6 TeV at CMS

ICHEP, Prague 2024

18.07.2024

Evan Altair Ranken

On behalf of the CMS collaboration

Top quarks: better in pairs

- World's heaviest particle, mainly produced in pairs at LHC
- Decays before hadronizing, almost exclusively to b + W

tt final state characterized by leptons from W decays:

dilepton / lepton(ℓ)+jets / all hadronic

- Leaves distinct signature:
 - ♦ High-p_T leptons
 - b quarks which become heavy-flavor b jets
 - Missing transverse momentum (MET/p_{T,miss}) from undetected neutrinos
 - Additional jets in ℓ+jets channel

Inclusive and differential measurements

Inclusive cross section $\sigma_{pp\,\rightarrow\,t\bar{t}}$

- Varies by over an order of magnitude @ LHC \sqrt{s} : 5 TeV \rightarrow 13.6 TeV $\sigma_{r\bar{r}}$: 69 pb \rightarrow 924 pb
- Precise measurements and comparison to prediction

Differential cross sections

- dσ_{tī}/dx : probe dependence on some variable "x"
- Detailed examination of SM and BSM model predictions
- Many possible measurements, including parameter extraction

Inclusive cross section measurements

New inclusive results at the highest and lowest LHC energies

- σ_{tī} measured at 6 energies ever, now 5 energies at LHC experiments
- @13.6 TeV CMS provided first physics measurement published in LHC Run 3:
 - Approx 1 fb⁻¹ of data from early weeks of 2022 data-taking
 - <u>Channel combination</u>

eμ, ee, μμ, e+jets, μ+jets

 \rightarrow use information from multiple channels to constrain nuisance parameters *in-situ*

- Bins:
 - Lepton flavor
 b jet multiplicity
 Jet multiplicity
- b-tag efficiency scale factors determined by fit
- SM pred. $\sigma_{\mathrm{t}\overline{\mathrm{t}}}=924^{+32}_{-40}\mathrm{pb}$

Number of jets

- Bins:
 - Lepton flavor
 b jet multiplicity
 Jet multiplicity
- b-tag efficiency scale factors determined by fit
- SM pred. $\sigma_{t\bar{t}} = 924^{+32}_{-40} pb$

Result (JHEP 08 (2023) 204)

 $\sigma_{t\bar{t}} = 881 \pm 23 (stat. + syst.) \pm 20 (lumi.) \, pb$

Number of jets

Uncertainty breakdown:

Source	Uncertainty (%)
Lepton ID efficiencies	1.6
Trigger efficiency	0.3
JES	0.6
b tagging efficiency	1.1
Pileup reweighting	0.5
ME scale, t ī	0.5
ME scale, backgrounds	0.2
ME/PS matching	0.1
PS scales	0.3
PDF and $\alpha_{\rm S}$	0.3
Top quark $p_{\rm T}$	0.5
tW background	0.7
<i>t</i> -channel single-t background	d 0.4
Z+jets background	0.3
W+jets background	< 0.1
Diboson background	0.6
QCD multijet background	0.3
Statistical uncertainty	0.5
Combined uncertainty	2.5
Integrated luminosity	2.3
Total unc. (with lumi.)	3.4

= Re	sulting uncertainty in C	ז tī
	2 leading uncertainties:	
	lepton, b-tag eff.	
	Not statistics limited	

Lumi comparable to likelihood stat+syst unc.

CMS

2017 data @ 5.02 TeV : low pileup, cleaner reconstruction

- Previous CMS measurements:
 - > 27.4 pb⁻¹ (ℓ+jets) <u>JHEP 03 (2018) 115</u>
 - 302 pb⁻¹ (dilepton eµ) <u>JHEP 04 (2022) 144</u>
- *New* dedicated measurement in *l*+jets channel with **302 pb**⁻¹ lumi: <u>CMS-PAS-TOP-23-005</u>
 - Exactly 1 lepton: p_T > 20 GeV, |η| < 2.4
 - Opposite flavor lepton veto: p_T > 10 GeV
 - At least 3 jets: p_T > 25 GeV, |η| < 2.4</p>
 - MET requirement: |p_{T,miss}| > 30 GeV
 - At least 1 b jet, DeepCSV (~75% efficiency)

Signal dominated, range in purity from ~ 60% (3j1b) to >90% (4j2b)

Measurement setup:

- Categorize by jet & b-jet multiplicity
- Further binning in each category to distinguish signal vs. backgrounds:
 - $\label{eq:red} \begin{array}{l} \Delta \mathbf{R}_{\rm med}(\mathbf{j},\mathbf{j'}) \mbox{-} median \mbox{ distance } \\ \mbox{ between jets } \\ \Delta R^2 = \Delta \eta^2 + \Delta \phi^2 \end{array}$

MVA: (3j1b category)

- Distinguish signal vs W+jets in category with least purity
- Random forest via Sklearn
- 8 Input variables
 (jet + lepton kinematics)

Measurement setup:

- Categorize by jet & b-jet multiplicity
- Further binning in each category to distinguish signal vs. backgrounds:
 - $\label{eq:red} \begin{array}{l} \Delta \mathbf{R}_{\rm med}(\mathbf{j},\mathbf{j'}) \mbox{-} median \mbox{ distance } \\ \mbox{ between jets } \\ \Delta R^2 = \Delta \eta^2 + \Delta \phi^2 \end{array}$

MVA: (3j1b category)

- Distinguish signal vs W+jets in category with least purity
- Random forest via Sklearn
- 8 Input variables
 (jet + lepton kinematics)

Result + combination <u>CMS-PAS-TOP-23-005</u>

- Improves previous CMS measurements:
 - ℓ+jets only result: 13% → 5.5% unc.
 (vs JHEP 03 (2018) 115)
 - eµ/ℓ+jets combo: 8.4% → 5.1% unc.
 (vs. JHEP 04 (2022) 144)
- Limiting uncertainties:
 - b-tagging, trigger, lepton ID efficiencies
 - Statistics

A new differential measurement

CMS

- tt differential measurements:
 - ◊ Visible event (b, ℓ)
 - Intermediate particles (t, W)
 - ♦ Invisible event (v, ?) \rightarrow first measurement!
- In BSM scenarios, the additional particles can contribute to undetected momentum
- Differential measurement of vv system kinematics:
 - First precision test of invisible event component via differential measurement
 - New means of distinguishing SM vs BSM scenarios

tt di-neutrino system kinematics

p_{T,miss} (MET) reconstruction challenges

- Challenging object to reconstruct:
 - Relies on modeling of other neutrinos produced via secondary interactions (especially in b-jets)
 - Requires accurate reconstruction of all visible particles in detector (especially jets)
- DNN used to improve MET resolution
 - Trained on difference between <u>PUPPI MET</u> and generator level MET
 - 17 inputs involving jet kinematics

rec. p_T^{miss} (GeV)

gen. p_T^{miss} -

14

tt di-neutrino system kinematics

- Using DNN MET, focus on two variables sensitive to BSM contributions
 - $p_{T,miss} = p_T(v\overline{v})$
 - $\min[\Delta \phi(p_{T,miss}, \ell)] \equiv \Delta \phi_{min}$

Selection:

- 2 leptons (ee, eµ, µµ)
 p_T > 20 GeV, |η| < 2.4
- ≥2 b-tagged jets (Deepjet, ~95% eff.)
 p_T > 30 GeV, |η| < 2.4
- ΔR(ℓ,jet) > 0.4
- **p**_{T,miss} > 40 GeV (ee, μμ only)

Dominant uncertainties

CMS

Experimental uncertainties

Dominated by JES/JER, statistics

Theoretical uncertainties

Dominated by tW interference (diagram subtraction vs. removal)

Results: differential cross sections

Unfolded results **show very good agreement** for first measurement of this distribution

POWHEG+PYTHIA show best agreement (but differences are small)

Results: differential cross sections

- 2D differential cross section also measured, shows good agreement
- Slightly better description from NNLO fixed-order prediction

CMS continues to perform a variety of interesting precision measurements targeting tt cross sections (inclusive and differential)

- Just last year, CMS published the first physics measurement of LHC Run 3: σ_{tt} at $\sqrt{s} = 13.6$ TeV JHEP 08 (2023) 204
- Recently, CMS has improved our measurement of σ_{tt} at $\sqrt{s} = 5.02$ TeV with an impressively precise effort in the lepton+jets channel CMS-PAS-TOP-23-005
- CMS presents a brand new preliminary measurement of the dineutrino system kinematics, the first differential result focusing on invisible event component!
 Online soon: CMS-PAS-TOP-24-001

Backup

Di-neutrino system: closure test

• To verify sensitivity to BSM physics, closure test performed with injected BSM signal

- Pseudodata used with enhanced BSM contribution
- Different unfoldings compared to expected distribution (red)
- Nominal distribution used for response matrix shown (blue)
- [χ² /ndf] shown in legend
- └→ Correct distributions reproduced

Di-neutrino system: closure test

To verify sensitivity to BSM physics, closure test performed with injected BSM signal

- Pseudodata used with enhanced BSM contribution
- Different unfoldings compared to expected distribution (red)
- Nominal distribution used for response matrix shown (blue)
- [χ² /ndf] shown in legend
- └→ Correct distributions reproduced

Normalized differential cross sections

- Unfolded results show good agreement
 - **1D:** POWHEG+PYTHIA shows best agreement
 - 2D: NNLO fixed-order fits best

23