
EFT based searches in the top-quark sector from CMS

Jniversidad de Oviedo

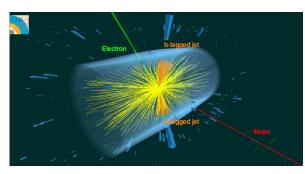
EUROPEAN UNION

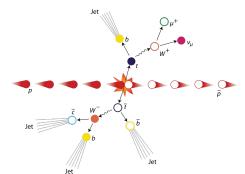
European Regional Development Fund

MINISTERIO DE CIENCIA E INNOVACIÓN

Grant PID2020-113341RB-100 funded by

Overview


- Introduction
 - What is EFT?
 - Why is it important?
- The top quark as a key player
- CMS results with the full Run2 data, 138 fb⁻¹:

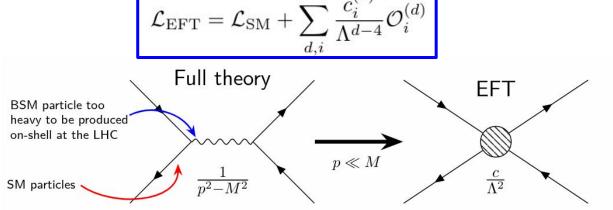


"Once you have a collider, every problem starts to look like a particle."

Phys. Rev. Lett. 132 (2024) 241802: "Search for Baryon Number Violation in Top Quark Production and Decay Using Proton-Proton Collisions at 13 TeV" JHEP 12 (2023) 068: "Search for physics beyond the standard model in top quark production with additional leptons in the context of effective field theory"

What is EFT?

- Effective Field Theory (EFT) is a **framework in theoretical physics** that simplifies the study of **complex systems** by focusing on the relevant degrees of freedom at a given energy scale while **integrating out the higher-energy details**
- EFT operates on the principle that physical phenomena can be described differently at various energy scales
- EFT uses a series of **operators**, which are mathematical constructs representing interactions, each multiplied by **coefficients** that encapsulate the strength of these interactions
- Applications:
 - Low-Energy Phenomena: Examples include Fermi's theory of beta decay, which describes weak interactions at low energies
 - High-Energy Physics: EFT helps to describe processes involving heavy particles like the top quark without needing a full theory of everything

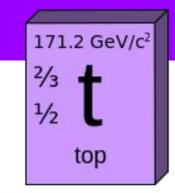

Why EFT is Important for Exploring Physics BSM?

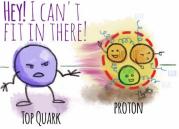
- The Standard Model (SM) of particle physics, while highly successful, is known to be incomplete
- EFT provides a structured approach to explore **potential new physics** beyond the SM by parameterizing unknown interactions in a systematic way
- Flexibility and Broad Applicability:
 - EFT is applicable across various energy scales
 - EFT remains largely agnostic about the specifics of the underlying high-energy theory

EFT helps bridge the gap between theoretical predictions and experimental observations

EFT Lagrangian

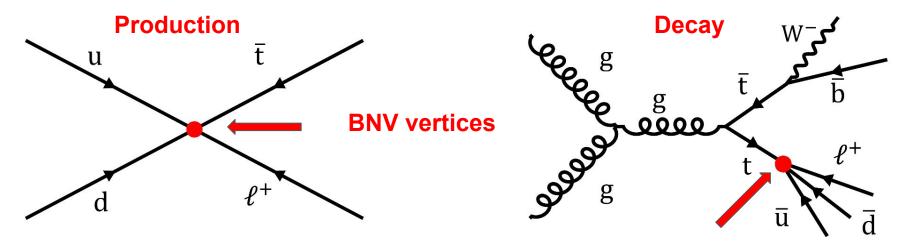
- Search new fundamental particles is motivated by the strong evidence for phenomena not described by the SM
- New particles may not be light enough to be produced at the LHC
- Indirect searches are needed if we want to probe these regimes
- Effective field theory (EFT) provides a framework for probing these higher energy scales



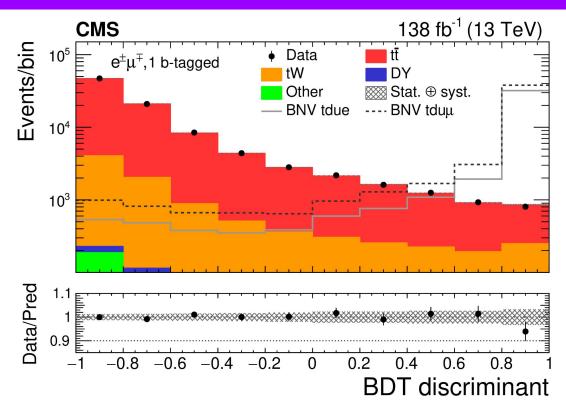

Since we can't produce heavy particle on-shell at the LHC, it would be hard to find it via a direct search, but EFT can provide discovery potential

The interaction can be described by an EFT operator, with the strength of the interaction determined by a WC c

The Top Quark: A Key Player in Particle Physics


- The top quark is pretty unique:
 - The heaviest of all known elementary particles
 - Due to its large mass, the top quark plays a crucial role in EWSB
 - Participates in strong interactions and comes in 3 colors making it subject to the rules of Quantum Chromodynamics (QCD)
 - Decay via the weak force (t \rightarrow Wb ~100%)
 - Decays immediately after its production before hadronization
 - Top quarks are produced in high-energy collisions via processes in the gluon-gluon fusion or quark-antiquark annihilation
- Top quark provides a clear signature and is abundantly produced at the LHC
 - Ideal probe in indirect searches
- The most relevant EFT in top quark physics is the Standard Model EFT (SMEFT)

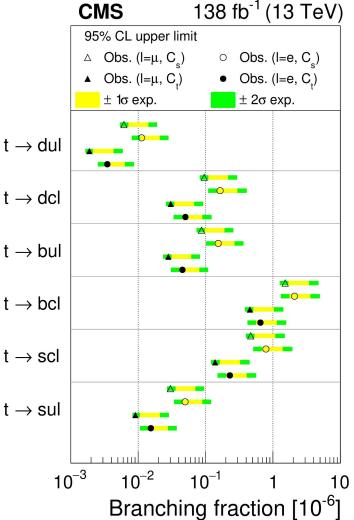
Baryon Number Violation: Intro Phys. Rev. Lett. 132 (2024) 241802


- A search for baryon number violating (BNV) interactions in top quark *production* and *decay*
- For the first time the production of single top quarks via BNV interactions is studied

- Events selected by requiring two oppositely-charged leptons (*electrons or muons*), exactly one b-tagged jet and high missing transverse momentum (>60 GeV):
 - One lepton is produced via the **BNV** interaction
 - The other lepton comes from the decay of the W boson from the top quark decay
- Analysis performed in three categories: e^+e^- , $\mu^+\mu^-$, and $e^\pm\mu^\mp$

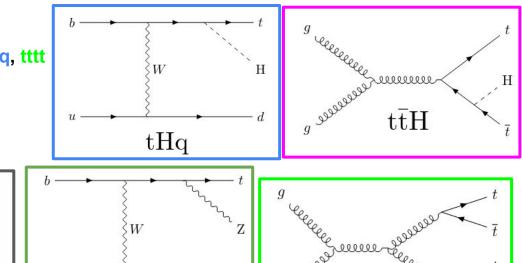
Baryon Number Violation: Analysis Strategy

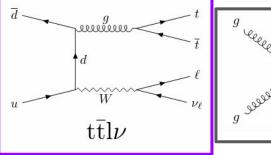
- Multivariate discriminants (BDT) to separate the signal from the background (tt, tW and DY)
- Examples of the predicted signal for the BNV interactions via teud (solid gray line) and tµud (dashed black line) vertices
- A binned maximum likelihood fit to the BDT output distributions is performed to search for the BNV processes

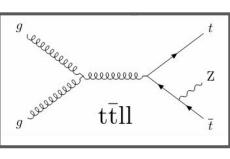


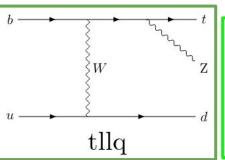
<u>The 3 main uncertainties are</u>: the normalization of the tW process, muon energy scale, and modeling of the top quark p_{τ} spectrum

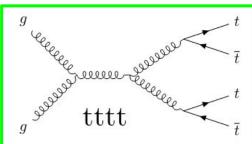
Baryon Number Violation: Results

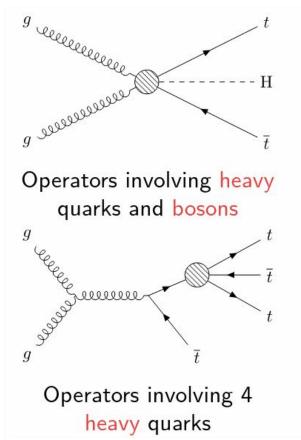

- A total of 24 WCs probed individually
- No significant deviation from the SM prediction is observed
- Upper limits are placed on the strength of the BNV couplings and are **translated** to limits on the branching fractions for the BNV top quark decays:
 - Circles for electrons
 - Triangles for muons
 - \circ C_t shown with filled markers
 - C_s shown with open markers
- Considering BNV vertices in the production of top quarks $t \rightarrow$ increases the sensitivity of this search
- The improved previous collider results (8 TeV <u>Phys. Lett.</u> t → <u>B 731 (2014) 173</u>) by multiple orders of magnitude

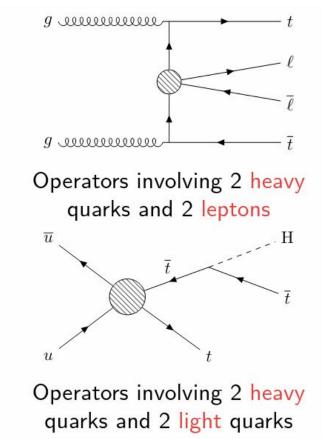

See <u>Ece Asilar's talk</u> for Lepton Flavor Violation




BSM in Top+X: Signal Processes


- Analysis focuses on operators that couple the **top quark** to leptons, bosons, and other heavy quarks
- Concentrates on associated top processes and model how EFT operators affect expected yields
 - 6 signal processes: ttlv, ttll, tllq, ttH, tHq, tttt Ο
 - Low cross section processes Ο
 - Clean well isolated signal region Ο

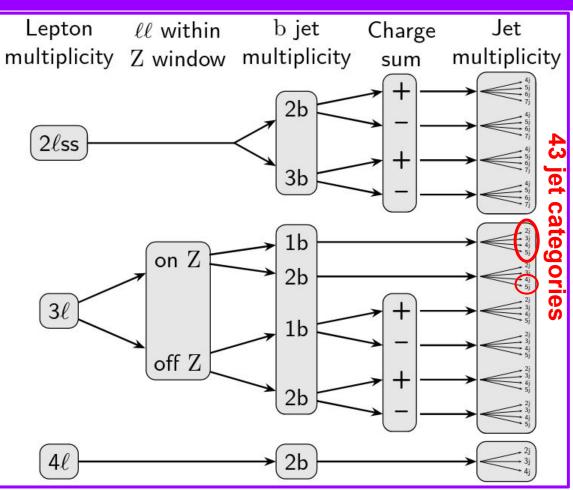


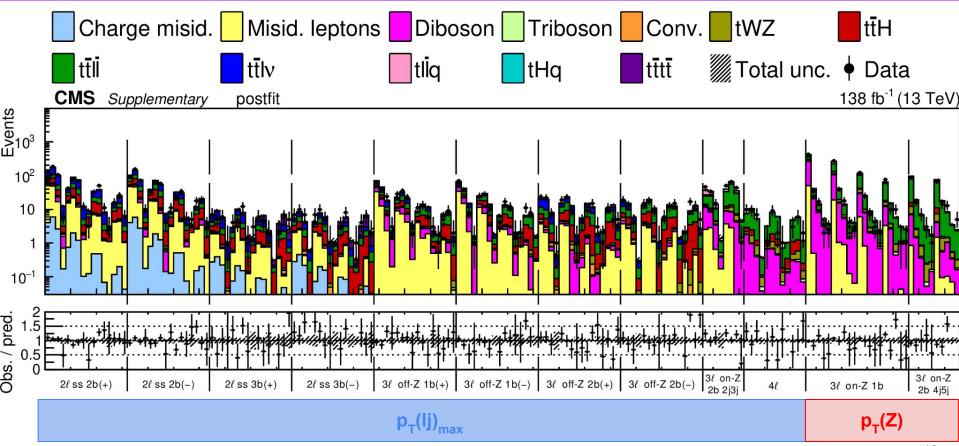


JHEP 12 (2023) 068

BSM in Top+X: Operators

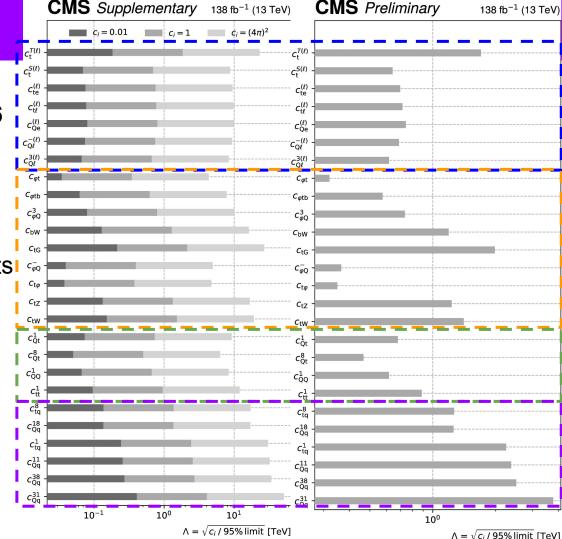
Focus on 26 operators, which can be grouped together into 4 different categories




11

BSM in Top+X: Event Selection

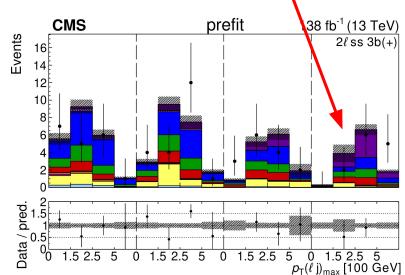
- Aims to discriminate between signal processes as much as possible:
 - **2Iss:** ttH and ttW (split by charge)
 - **3I on Z:** ttll (2b), tllq (1b)
 - 3I off Z: non-resonant ttll and tllq (2-quark 2-lepton EFT contributions)
 - ≥ 4I: ttH and ttll
- Use different variables to optimize sensitivity to EFT effects
 - p_T(lj)_{max}: p_T of the leading lepton plus jet pairs (39 categories)
 - p_T(Z): p_T of the opposite sign lepton pair (6 categories)



BSM in Top+X: Kinematic variables per category

BSM in Top+X: Results

- The postfit values are obtained by **simultaneously fitting** all 26 WCs and the NPs
- Most results dominated by statistical uncertainties, the main syst. unc. is NLO norm
- Limits on WCs translated to limits in the new physics scale:
 - 2 heavy quarks+2 leptons:
 - heavy quarks+bosons:
 - 4 heavy quarks:
 - ∧ > O(700 GeV) O(1 TeV)
 - 2 heavy quarks+2 light quarks:
 - Λ > O(1 TeV) O(3 TeV)


BSM in Top+X: Sensitivity Results

- Interpretation of sensitivity
 - Identification of bins that provide the leading contributions to each Wilson
 Coefficient category
 Charge misid. Misid. leptons Diboson Triboson Conv. https://www.conv.com
- Example of **4 heavy quark operators**:
 - The sensitivity to these WCs is provided primarily by the **2ess bins**, with leading contributions from the bins requiring at least **three b-tagged jets**

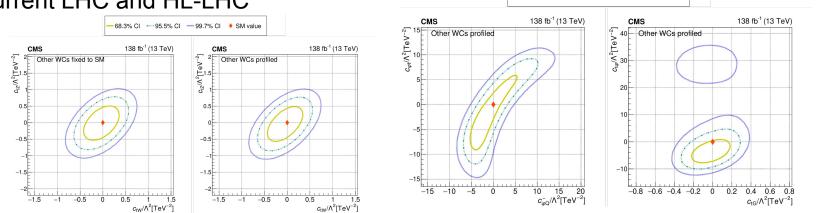
tīlī

tīlv

- 4-top enriched region
- A fit is performed only to these bins
- The resulting confidence intervals are only degraded by about 4 - 6% with respect to the fit with all bins included

tHa

tītī


tlīa

tīH

Total unc. 🛉 Data

Summary

- EFT is a powerful technique for indirect searches of **BSM** physics at the LHC
- Rich and active program of CMS EFT analyses in the top quark sector
- The results are **consistent** with SM expectations
 - BNV much improved results given the new center-of-mass energy, increase statistics and the addition of BNV vertices in the production of top quarks
 - Setting limits on 26 independent Wilson coefficients, also exploring correlations among the WCs
- In the future, EFT approaches will benefit greatly from increased statistics of the current LHC and HL-LHC

BACK-UP SLIDES

Baryon Number Violation

19

Theoretical inclusive cross sections for single top quark production (ST) and top quark-antiquark pair production with the decay (TT) via BNV interactions, assuming a top quark mass of 172.5 GeV, the top quark decay width 1.33 GeV, Λ = 1 TeV, and Ct= 1 or Cs= 1

Process	$\sigma(C_t = 1) \text{ [pb]}$	$\sigma(C_s = 1) \text{ [pb]}$
ST (tℓud)	$31.5 \pm 2.1 \pm 1.0$	$10.7 \pm 0.7 \pm 0.4$
ST (tℓus)	$8.1\pm0.3\pm0.5$	$2.8\pm0.1\pm0.2$
ST (tℓub)	$3.31 \pm 0.13 \pm 0.06$	$1.14 \pm 0.05 \pm 0.02$
ST (t ℓ cd)	$2.77 \pm 0.22 \pm 0.01$	$0.96 \pm 0.01 \pm 0.07$
ST (tℓcs)	$0.79 \pm 0.02 \pm 0.11$	$0.27 \pm 0.01 \pm 0.04$
ST (tℓcb)	$0.28 \pm 0.03 \pm 0.04$	$0.10 \pm 0.01 \pm 0.01$
TT	$0.007 \pm 0.002 \pm 0.001$	$0.007 \pm 0.002 \pm 0.001$

Baryon Number Violation

Vertex	$C_{\rm x}$	$C_{\rm x}/\Lambda^2$	$C_{\rm x}/\Lambda^2$	\mathcal{B}_{x}	\mathcal{B}_{x}
	~	$[\text{TeV}^{-2}]$	$[\text{TeV}^{-2}]$	$[10^{-6}]$	$[10^{-6}]$
		Exp.	Obs.	Exp.	Obs.
teud	S	0.055	0.048	0.015	0.011
ieuu	t	0.031	0.027	0.005	0.003
Lund	s	0.046	0.036	0.010	0.006
tµud	t	0.025	0.020	0.003	0.002
. 1	S	0.207	0.184	0.208	0.164
tecd	t	0.114	0.102	0.063	0.050
	S	0.178	0.141	0.153	0.095
tµcd	t	0.100	0.080	0.048	0.030
	s	0.115	0.101	0.063	0.050
teus	t	0.064	0.056	0.019	0.015
	S	0.102	0.079	0.050	0.030
tμus	t	0.056	0.043	0.015	0.009
	s	0.448	0.403	0.973	0.786
tecs	t	0.243	0.218	0.286	0.229
	s	0.394	0.311	0.752	0.468
tµcs	t	0.217	0.169	0.228	0.138
. 1	S	0.199	0.178	0.191	0.154
teub	t	0.109	0.097	0.057	0.045
. 1	s	0.168	0.134	0.136	0.087
tµub	t	0.095	0.076	0.044	0.028
. 1	S	0.718	0.657	2.503	2.090
tecb	t	0.405	0.367	0.795	0.652
. 1	s	0.703	0.564	2.393	1.521
tµcb	t	0.386	0.307	0.722	0.455

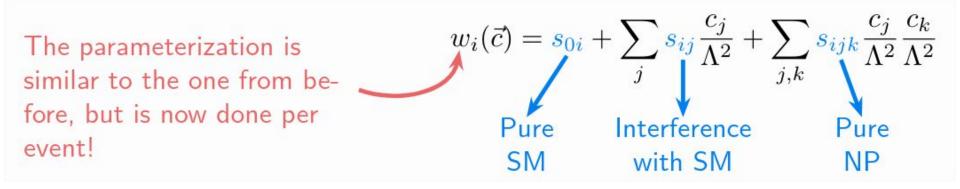
Expected and observed 95% CL upper limits on the BNV effective couplings and top quark BNV branching fractions

Ideal EFT Parametrization

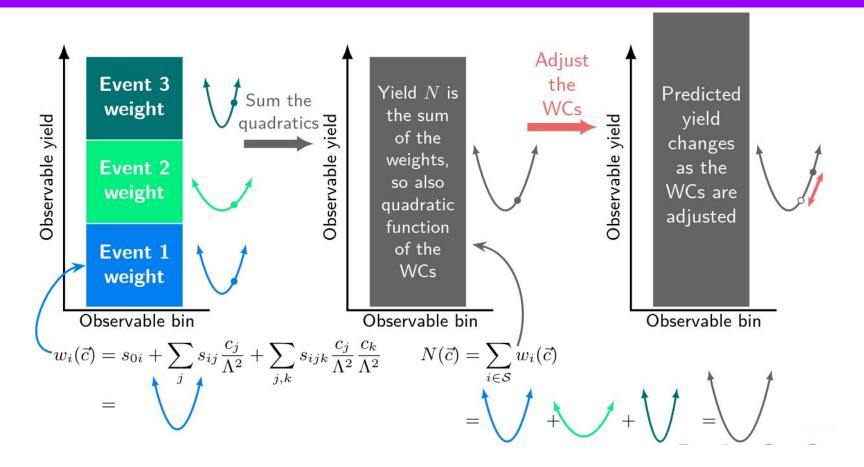
- Model the EFT contributions
- Matrix element can be written as the sum of SM and new physics components

$$\mathcal{M} = \mathcal{M}_{\rm SM} + \sum_{i} \frac{c_i}{\Lambda^2} \mathcal{M}_i \longrightarrow \frac{c_i \text{ are the Wilson}}{\text{coefficients}}$$

• Since $\sigma \propto M^2 \rightarrow$ the cross section will have a quadratic dependence on the WCs


$$d\sigma(\vec{c}) \propto \left| \mathcal{M}_{\rm SM} + \sum_{i} \frac{c_i}{\Lambda^2} \mathcal{M}_i \right|^2 \propto s_0 + \sum_{j} \frac{s_j}{\Lambda^2} \frac{c_j}{\Lambda^2} + \sum_{j,k} \frac{s_{jk}}{\Lambda^2} \frac{c_j}{\Lambda^2} \frac{c_k}{\Lambda^2}$$

$$\begin{array}{c} \mathsf{Pure} & \mathsf{Interference} & \mathsf{Pure} \\ \mathsf{SM} & \mathsf{with} \; \mathsf{SM} & \mathsf{NP} \end{array}$$


Far too computationally intensive. Would need O(100) MC samples per signal process

Real EFT Parametrization

- Model the EFT contributions event by event
- Build a **weight function per event** based on a 26-dimensional quadratic parametrization using the Madgraph event reweighting technique:

Real EFT Parametrization

Real EFT Parametrization

- Signal contribution is modeled at leading order, LO, using MadGraph5_aMC@NLO with dim6top model
- Using Warsaw basis of gauge invariant dimension-6 operators providing tree-level modeling for the effects
- In the analysis, it is assumed that the EFT effects impact each lepton generation on the same way

Object Requirements

Object requirements for the 43 event selection categories. Requirements separated by commas indicate a division into subcategories. The kinematical variable that is used in the event category is also listed

Event category	Leptons	$m_{\ell\ell}$	b tags	Lepton charge sum	Jets	Differential variable
$2\ell ss 2b$	2	No requirement	2	> 0, <0	4,5,6,≥7	$p_{\mathrm{T}}(\ell \mathrm{j} 0)$
$2\ell ss 3b$	2	No requirement	\geq 3	> 0, <0	4,5,6,≥7	$p_{\mathrm{T}}(\ell \mathrm{j}0)$
3ℓ off-Z 1b	3	$ m_{\rm Z} - m_{\ell\ell} > 10{ m GeV}$	1	> 0, <0	2,3,4,≥5	$p_{\mathrm{T}}(\ell \mathrm{j}0)$
3ℓ off-Z 2b	3	$ m_{\rm Z}-m_{\ell\ell} >10{\rm GeV}$	≥ 2	> 0, <0	2,3,4,≥5	$p_{\mathrm{T}}(\ell \mathrm{j} \mathrm{0})$
3ℓ on-Z 1b	3	$ m_{\rm Z} - m_{\ell\ell} \le 10{ m GeV}$	1	No requirement	2,3,4,≥5	$p_{\mathrm{T}}(\mathrm{Z})$
3ℓ on-Z $2b$	3	$ m_{\rm Z} - m_{\ell\ell} \le 10{ m GeV}$	≥ 2	No requirement	2,3,4,≥5	$p_{\mathrm{T}}(\mathrm{Z})$ or $p_{\mathrm{T}}(\ell \mathrm{j} 0)$
4ℓ	≥ 4	No requirement	≥ 2	No requirement	2,3,≥4	$p_{\mathrm{T}}(\ell \mathrm{j} 0)$

NLO theoretical cross sections used for normalizing the signal simulation samples

Process	Cross section (pb)
tŦH	0.215 [20]
tītlī	0.281 [20]
tτlν	0.235 [21]
tlĪq	0.076 [15]
tHq	0.071 [20]
tttt	0.012 [22]

The 1 and 2 σ uncertainty intervals extracted from the likelihood fits

WC/Λ^2 [TeV ⁻²]	2σ Interval (others profiled)	2σ Interval (others fixed to SM)	WC/Λ^2 [TeV ⁻²]	1σ Interval (others profiled)	1σ Interval (others fixed to SM)
$c_{t}^{T(\ell)}$	[-0.37, 0.37]	[-0.40, 0.40]	$c_{t}^{T(\ell)}$	[-0.21, 0.21]	[-0.26, 0.26]
$c_t^{S(\ell)}$	[-2.60, 2.59]	[-2.80, 2.80]	$c_{t}^{S(\ell)}$	[-1.52, 1.50]	[-1.82, 1.82]
$c_{ ext{te}}^{(\ell)} \ c_{ ext{te}}^{(\ell)} \ c_{ ext{te}}^{(\ell)}$	[-1.76, 2.20]	[-1.90, 2.39]	$c_{ ext{te}}^{(\ell)}$	[-0.91, 1.40]	[-1.13, 1.68]
$c_{{\mathfrak t}\ell}^{(\ell)}$	[-1.78, 2.10]	[-2.01, 2.20]	$c_{ ext{t}\ell}^{(\ell)}$	[-0.92, 1.31]	[-1.27, 1.47]
$c_{Oe}^{(\ell)}$	[-1.89, 1.94]	[-2.04, 2.12]	$c_{Qe}^{(\ell)}$	[-1.08, 1.14]	[-1.32, 1.40]
$c_{Q\ell}^{\widetilde{-}(\ell)} \ c_{Q\ell}^{3(\ell)}$	[-1.56, 2.27]	[-1.80, 2.33]	$c_{Q\ell}^{\widetilde{-}(\ell)} \ c_{Q\ell}^{3(\ell)}$	[-0.68, 1.52]	[-1.06, 1.64]
$c_{O\ell}^{\widetilde{3}(\ell)}$	[-2.81, 2.54]	[-2.68, 2.58]	$c_{O\ell}^{3(\ell)}$	[-1.84, 1.49]	[-1.76, 1.63]
$c_{\varphi t}^{\sim}$	[-10.76, 7.91]	[-4.95, 3.19]	$c_{\varphi t}$	[-7.66, 1.59]	[-2.59, 1.34]
	[-3.23, 3.23]	[-3.15, 3.19]	C_{ath}	[-1.67, 1.68]	[-1.62, 1.67]
$c_{arphi ext{tb}} \ c_{arphi ext{Q}}^3$	[-0.81, 2.01]	[-0.84, 1.91]	$c_{\varphi Q}^{3}$	[-0.06, 1.37]	[-0.11, 1.27]
$c_{\rm bW}$	[-0.75, 0.76]	[-0.75, 0.75]	$c_{\rm bW}$	[-0.39, 0.39]	[-0.39, 0.39]
c_{tG}	[-0.27, 0.24]	[-0.22, 0.25]	c_{tG}	[-0.16, 0.12]	[-0.09, 0.15]
$c_{\varphi Q}^{-}$	[-6.09, 8.20]	[-2.66, 2.95]	$c_{\varphi Q}^{-}$	[-4.50, 1.12]	[-1.19, 1.58]
$C_{t\varphi}$	[-8.98, 2.85]	[-7.68, 2.15]	$c_{t\varphi}$	[-6.53, -0.84]	[-5.50, -0.63]
c_{tZ}	[-0.70, 0.63]	[-0.58, 0.59]	c_{tZ}	[-0.39, 0.32]	[-0.31, 0.32]
$c_{\rm tW}$	[-0.54, 0.45]	[-0.47, 0.41]	c_{tW}	[-0.31, 0.22]	[-0.26, 0.21]
	[-2.71, 2.66]	[-2.75, 2.62]	c_{Qt}^1	[-2.03, 1.98]	[-2.05, -0.75] and [0.49, 1.97]
c_{0}^{8}	[-5.15, 5.74]	[-5.24, 5.66]	$c_{Ot}^{\tilde{8}}$	[-3.75, 4.38]	[-3.93, -0.95] and [1.51, 4.30]
	[-3.03, 3.28]	[-3.04, 3.28]	$c_{\rm OO}^{1}$	[-2.21, 2.49]	[-2.28, -0.53] and [0.90, 2.47]
c_{μ}^{1}	[-1.56, 1.60]	[-1.54, 1.63]	$c_{tt}^{\tilde{1}}$	[-1.16, 1.20]	[-1.16, -0.28] and [0.43, 1.22]
	[-0.67, 0.25]	[-0.68, 0.24]	c_{ta}^8	[-0.45, 0.03]	[-0.47, 0.02]
$c_{\Omega \sigma}^{18}$	[-0.68, 0.21]	[-0.67, 0.21]	c_{Oa}^{18}	[-0.47, -0.01]	[-0.46, -0.00]
$\mathcal{C}^{\mathbf{q}}_{\mathbf{t}_{\mathbf{r}}}$	[-0.21, 0.21]	[-0.22, 0.20]	$c_{ta}^{\tilde{1}}$	[-0.11, 0.11]	[-0.12, 0.10]
$c_{\Omega r}^{11}$	[-0.19, 0.19]	[-0.19, 0.19]	c_{Oq}^{11}	[-0.10, 0.10]	[-0.10, 0.10]
c ³⁸	[-0.17, 0.16]	[-0.17, 0.16]	$c_{Oq}^{\tilde{3}\tilde{8}^{1}}$	[-0.09, 0.08]	[-0.09, 0.08]
c_{Qt}^{1} c_{Qt}^{8} c_{QQ}^{1} c_{tt}^{1} c_{tq}^{10} c_{tq}^{10} c_{tq}^{10} c_{Qq}^{10} c_{Qq}^{11} c_{Qq}^{20} c_{Qq}^{21} c_{Qq}^{21}	[-0.08, 0.07]	[-0.08, 0.07]	c_{Qq}^{8} c_{QQ}^{1} c_{tt}^{1} c_{tq}^{18} c_{Qq}^{18} c_{Qq}^{11} c_{Qq}^{11} c_{Qq}^{38} c_{Qq}^{331} c_{Qq}^{2}	[-0.04, 0.03]	[-0.04, 0.03]

Leading Categories

Grouping of WCs	WCs	Lead categories
Two heavy two leptons	$c_{Q\ell}^{3(\ell)}, c_{Q\ell}^{-(\ell)}, c_{Qe}^{(\ell)}, c_{t\ell}^{(\ell)}, c_{t\ell}^{(\ell)}, c_{t\ell}^{(\ell)}, c_{te}^{S(\ell)}, c_{t}^{T(\ell)}$	3ℓ off-Z
Four heavy	$c_{\rm QQ}^1, c_{\rm Qt}^1, c_{\rm Qt}^8, c_{\rm tt}^1$	$2\ell ss$
Two heavy two light "t \overline{t} l ν -like"	$c_{\mathrm{Qq}}^{11}, c_{\mathrm{Qq}}^{18}, c_{\mathrm{tq}}^{1}, c_{\mathrm{tq}}^{8}$	$2\ell ss$
Two heavy two light "tllq-like"	$c_{\rm Qq}^{31}, c_{\rm Qq}^{38}$	3ℓ on-Z
Two heavy with bosons "tītll-like"	c_{tZ} , $c_{\varphi\mathrm{t}}$, $c_{\varphi Q}^{-}$	3ℓ on-Z and $2\ell ss$
Two heavy with bosons "tXq-like"	$c_{\varphi Q}^3, c_{\varphi tb}, c_{bW}$	3ℓ on-Z
Two heavy with bosons with signif- icant impacts on many processes	$c_{\mathrm{t}G}, c_{\mathrm{t}\varphi}, c_{\mathrm{t}W}$	3ℓ and $2\ell ss$

Operators

Focus on 26 operators, which can be grouped together into 4 different categories

Reference: Interpreting top-quark LHC measurements in the standard-model effective field theory

Operator category	WCs
Two heavy quarks	$c_{t\varphi}, c_{\varphi Q}^{-}, c_{\varphi Q}^{3}, c_{\varphi t}, c_{\varphi tb}, c_{tW}, c_{tZ}, c_{bW}, c_{tG}$
Two heavy quarks two leptons	$c_{Q\ell}^{3(\ell)}, c_{Q\ell}^{-(\ell)}, c_{Qe}^{(\ell)}, c_{t\ell}^{(\ell)}, c_{te}^{(\ell)}, c_{t}^{S(\ell)}, c_{t}^{T(\ell)}$
Two light quarks two heavy quarks	$c_{Qq}^{31}, c_{Qq}^{38}, c_{Qq}^{11}, c_{Qq}^{18}, c_{tq}^{1}, c_{tq}^{8}$
Four heavy quarks	$c_{QQ}^{1}, c_{Qt}^{1}, c_{Qt}^{8}, c_{tt}^{1}$

Aim to include all operators that **significantly impact** processes in which one or more top quarks are produced in association with charged leptons