

Combined measurement of the top quark mass at 7 and 8 TeV by ATLAS and CMS

42nd International Conference on High Energy Physics

Prague, 17-24 July 2024

Matteo M. Defranchis (CERN) on behalf of the CMS and ATLAS Collaborations

Phys. Rev. Lett. 132, 261902 (2024) See also: synopsis

The role of m_t in the SM

In the SM, m_t can be related to m_W and m_H thanks to loop corrections to precision EW observables -> internal consistency of SM

Stability of Higgs potential at the Planck scale depends on value of m_t

 $>\lambda < 0$ would be indirect evidence of BSM physics

Matteo M. Defranchis (CERN)

Methods for measuring m_t

Matteo M. Defranchis (CERN)

Illustration from CMS Physics Briefing of arXiv:2403.01313 (submitted to Physics Reports)

ATLAS and CMS Run-1 measurements

Matteo M. Defranchis (CERN)

Direct m_t measurements in LHC Run1

• Invariant mass between lepton and secondary vertex from b-quark jet

- Partial reconstruction of top quark decay products
- Larger overall uncertainty, but less sensitive to jet energy scale uncertainties
 - Beneficial for combinations

 $173.68 \pm 0.20 \,(\text{stat})^{+1.58}_{-0.97} \,(\text{syst}) \,\text{GeV}$

Matteo M. Defranchis (CERN)

• Full reconstruction of m_t (and m_W) using maximum likelihood method • 3D template fit: m_t, JSF (jet scale factor) and b-JSF • Trade larger statistical uncertainty for lower impact of systematics

$m_{top} = 172.08 \pm 0.39 (stat) \pm 0.82 (syst) GeV$

The BLUE method BLUE = Be

$$m_{\rm t} = \sum_{i} w_i m_{\rm t}^{\rm i}$$
, with $\sum_{i} w_i = 1$

- \bullet For a given choice of correlations, set of w_i that provide the Best (i.e. lower variance) estimate of m_t can be calculated
- \bullet The result is unbiased, as long as $m_t{}^i$ are unbiased
- Weights can be negative (e.g. strong negative correlations)

Example for 2 input measurements:

Note: when uncertainties on input measurements are different (z>1), taking rho=1 is not the conservative assumption!

Matteo M. Defranchis (CERN)

BLUE = Best Linear Unbiased Estimator

Linear combination of inputs

Assessment of correlations

- - Same underlying variations used to assess impact of a given systematic uncertainty
 - Sign of the correlation coefficients can also be accessed
- For the LHC combination, sources of uncertainty are grouped into classes (e.g. b-tagging, PDF)
- For each class, a choice of correlation is made, based on **similarity in the way the uncertainties are estimated** (or underlying physics model)

LHC correlation assumptions

Assessed correlation	Strong	Partial	None
Assigned correlation coefficient	0.85	0.5	0

Matteo M. Defranchis (CERN)

• Within a single experiments, correlations between measurements can be assessed rather rigorously

ATLAS-CMS correlations

Correlation	LHC categories
Strong	 Flavour component of JES* Pileup modelling Parton distribution functions (PDFs) MC-based background estimates
Partial	 b tagging (similar method) MC modelling (different systematic variations to assess similar effects)
None	 Experimental uncertainties (calibrations using independent datasets) Analysis-specific calibrations

Matteo M. Defranchis (CERN)

Example correlation matrices per systematic uncertainty can be found in the backup

ATLAS+CMS

√s = 7,8 TeV

ATLAS dil 7 TeV	1.00	-0.07	0.42	0.51	0.06	0.07	0.13	0.22	0.11	0.18	0.23	0.13	0.10	-0.06	-0.15
ATLAS lj 7 TeV	-0.07	1.00	-0.01	0.00	-0.07	-0.02	0.09	0.08	0.03	0.08	0.04	0.01	0.10	0.02	-0.04
ATLAS aj 7 TeV	0.42	-0.01	1.00	0.29	-0.06	0.00	0.11	0.19	0.11	0.13	0.21	0.16	0.09	-0.01	-0.04
ATLAS dil 8 TeV	0.51	0.00	0.29	1.00	-0.18	0.31	0.09	0.16	0.08	0.12	0.16	0.10	0.07	-0.04	-0.10
ATLAS lj 8 TeV	0.06	-0.07	-0.06	-0.18	1.00	-0.03	0.02	-0.00	-0.00	-0.04	0.05	-0.03	0.03	-0.01	0.00
ATLAS aj 8 TeV	0.07	-0.02	0.00	0.31	-0.03	1.00	0.10	0.11	0.06	-0.01	0.14	0.08	0.07	0.01	0.10
CMS dil 7 TeV	0.13	0.09	0.11	0.09	0.02	0.10	1.00	0.31	0.57	0.31	0.46	0.36	0.26	0.08	0.13
CMS lj 7 TeV	0.22	0.08	0.19	0.16	-0.00	0.11	0.31	1.00	0.53	0.10	0.41	0.45	0.29	-0.03	0.03
CMS aj 7 TeV	0.11	0.03	0.11	0.08	-0.00	0.06	0.57	0.53	1.00	0.12	0.34	0.35	0.21	-0.03	0.07
CMS dil 8 TeV	0.18	0.08	0.13	0.12	-0.04	-0.01	0.31	0.10	0.12	1.00	0.23	0.07	0.09	-0.04	-0.16
CMS lj 8 TeV	0.23	0.04	0.21	0.16	0.05	0.14	0.46	0.41	0.34	0.23	1.00	0.70	0.48	0.06	0.15
CMS aj 8 TeV	0.13	0.01	0.16	0.10	-0.03	0.08	0.36	0.45	0.35	0.07	0.70	1.00	0.47	0.05	0.22
CMS t 8 TeV	0.10	0.10	0.09	0.07	0.03	0.07	0.26	0.29	0.21	0.09	0.48	0.47	1.00	-0.01	0.08
CMS J/ Ψ 8 TeV	-0.06	0.02	-0.01	-0.04	-0.01	0.01	0.08	-0.03	-0.03	-0.04	0.06	0.05	-0.01	1.00	0.12
CMS vtx 8 TeV	-0.15	-0.04	-0.04	-0.10	0.00	0.10	0.13	0.03	0.07	-0.16	0.15	0.22	0.08	0.12	1.00

ATLAS dil 7 Tev Tev 8 Tev Tev 8 Tev Tev 7 EV 8 Tev 7 EV 8 Tev 7 EV 8 Tev 7 EV 1 Tev 1 Tev

*correlations between jet energy scale (JES) uncertainties studied in detail in dedicated LHCTopWG note

Results, impact, correlation scans

Most precise m_t result to date!

Improvement of 31% with respect to most precise single input measurement

- Uncertainty dominated by b-JES
- **Negligible impact** on final result by varying correlation assumptions within ranges that reflect the understanding of the correlation

Matteo M. Defranchis (CERN)

Uncertainty categ

b-JES b tagging ME generator JES 1 JES 2 Method CMS b hadron \mathcal{B} QCD radiation Leptons JER CMS top quark *p*-Background (data Color reconnectio Underlying event g-JES Background (MC) Other 1-JES CMS JES 1 Pileup JES 3 Hadronization $p_{\mathrm{T}}^{\mathrm{miss}}$ PDF Trigger Total systematic Statistical

Total

	Uncert	ainty impa	act [GeV]					
gory	LHC	ATLAS	CMS	I Incortainty category	0	Scan rango	$\Delta m_{\rm t}/2$	Δ
	0.18	0.17	0.25	- Oncertainty category	ρ	Scall lange	[MeV]	[]
	0.09	0.16	0.03	JES 1	0			
	0.08	0.13	0.14	JES 2	0	[-0.25, +0.25]	8	
	0.08	0.18	0.06	JES 3	0.5	[+0.25, +0.75]	1	
	0.08	0.11	0.10	b-JES	0.85	[+0.5, +1]	26	
	0.07	0.06	0.09	g-JES	0.85	[+0.5, +1]	2	
	0.07		0.12	1-JES	0	[-0.25, +0.25]	1	
	0.06	0.07	0.10	CMS JES 1				
	0.05	0.08	0.07	JER	0	[-0.25, +0.25]	5	
	0.05	0.09	0.02	Leptons	0	[-0.25, +0.25]	2	
Т	0.05		0.07	b tagging	0.5	[+0.25, +0.75]	1	
a)	0.05	0.04	0.06	$p_{\rm T}^{\rm miss}$	0	[-0.25, +0.25]	<1	
on	0.04	0.08	0.03	Pileup	0.85	[+0.5, +1]	2	
t	0.04	0.03	0.05	Trigger	0	[-0.25, +0.25]	<1	
	0.03	0.02	0.04	ME concrator	05		~1	
.)	0.03	0.07	0.01	OCD rediction	0.5	[+0.25, +0.75]	<1	
	0.03	0.06	0.01	QCD radiation	0.5	[+0.25, +0.75]	/	
	0.03	0.01	0.05	Hadronization	0.5	[+0.25, +0.75]	I	
	0.03		0.04	CMS b hadron B				
	0.03	0.07	0.03	Color reconnection	0.5	[+0.25, +0.75]	3	
	0.02	0.07	0.01	Underlying event	0.5	[+0.25, +0.75]	1	
	0.02	0.01	0.01	PDF	0.85	[+0.5, +1]	1	
	0.02	0.04	0.01	CMS top quark $p_{\rm T}$				
	0.02	0.06	< 0.01	Background (data)	0	[-0.25, +0.25]	8	
	0.01	0.01	0.01	Background (MC)	0.85	[+0.5, +1]	2	
	0.30	0.41	0.39	Method	Ο			
	0.14	0.25	0.14	Other	0			
	0.33	0.48	0.42		U		-	

Consistency check: 2D combination

Overall correlation and consistency between ATLAS and CMS can be assessed via **simultaneous ATLAS-CMS combination**:

- One top mass parameter per experiment
- Different from single-experiment combination due to effect of systematic correlations

For example, for ATLAS (vice-versa for CMS):

$$m_{t}^{\text{ATLAS}} = \sum_{i} w_{i}^{\text{ATLAS}} m_{t}^{\text{i,ATLAS}} + \sum_{j} w_{j}^{\text{CMS}} m_{j}^{\text{CMS}}$$
with $\sum_{i} w_{i}^{\text{ATLAS}} = 1$ and $\sum_{j} w_{j}^{\text{CMS}} = 0$

Results compatible with the hypothesis $m_t^{\text{ATLAS}} = m_t^{\text{CMS}}$

Matteo M. Defranchis (CERN)

Consistency check: channels

The same can be done to check the **compatibility** between different "channels":

	χ² (ndf)	χ²/ndf
Full combination	7.5 (14)	0.54
2-dimensional	7.2 (13)	0.55
Per channel	5.4 (11)	0.49

No significant differences in χ^2/ndf demonstrates compatibility between channels and experiments

Matteo M. Defranchis (CERN)

Comparison with CMS 13 TeV

- 5-dimensional **profile-likelihood fit** in l+jets final state
- Central value is 0.75 GeV below Run1 combination
- Various differences between Run1 and Run2 in terms of MC simulation and systematic variations

36.3 fb⁻¹ (13 TeV) 0.8

 $\boldsymbol{\rho}_{\text{FSR}}$

Table adapted from CMS review paper [arXiv:2403.01313, sub. to Physics Reports]

		Run 1	Run 2 legac
	Default setup		
	ME generator	MadGraph5	POWHEG v2
		$t\bar{t} + \leq 3$ jets @ LO	tī @ NLO
	PDF	CT10 NLO	NNPDF3.1 NN
	PS/UE generator	pythia6.4	pythia8.2
	PS/UE tune	Z2(*)	CP5
	Uncertainties		
	PDF	CT10 eigenvectors,	NNPDF eigenve
		MSTW08, NNPDF2.3 +	CT14, MMHT1
	ME scales	$\mu_{\mathbf{r}} \oplus \mu_{\mathbf{f}} \mathbf{up}/\mathbf{down}$	$\mu_{ m r} \oplus \mu_{ m f}$ 7-poin
	ME-PS matching	threshold up/down	h _{damp} up/dov
	Alternative ME	powheg v1	MADGRAPH5_aMG
	Top quark $p_{\rm T}$	ratio to 7/8 TeV data	ratio to 13 TeV of
	ISR	μ_r^{ISR} up/down	$\mu_{\rm r}^{\rm ISR}$ up/down
		(correlated with ME)	
	FSR		μ_r^{FSR} up/down
L	UE	P11, P11 mpiHi/TeV	CP5 up/dow
	CR	P11, P11noCR	ERD on/off
			CR1, CR2 (both El
	b fragmentation	$r_{\rm b}$ up/down t	<i>r</i> _b up/down, un/
			Peterson †

Comparison with ATLAS 13 TeV

- Invariant mass between lepton from top quark decay and **soft muon from b-quark decay** ("alternative" method)
- Less sensitive to JES, but dependent on b quark fragmentation
- In agreement with ATLAS combination within <u>2 standard deviations</u>

 $m_t = 174.41 \pm 0.39 \text{ (stat.)} \pm 0.66 \text{ (syst.)} \pm 0.25 \text{ (recoil)} \text{GeV}$

Matteo M. Defranchis (CERN)

JHEP 06 (2023) 019

- Ambiguity in Pythia on choice of recoiler particle from second gluon emissions in top quark decays
- Effect on the LHC combination estimated to be at most 35 MeV, well below the total uncertainty

Prospects for m_t at the (HL-)LHC

- Enormous progress in m_t measurements using boosted top quark decays • Big margin of improvement with large datasets (Run3, HL-LHC)
- Possibility to perform both direct measurement and indirect extraction of m_t using first-principles theoretical predictions (SCET, HQET) • Unambiguously interpret result in well-defined theoretical framework

Summary and outlook

- \bullet BLUE combination of 15 Run-1 measurements from ATLAS and CMS yields most precise m_t result to da
 - Better than 2 per mill precision!
- <u>31% improvement</u> over most precise single input

- Careful assessment of inter-experiment correlations
- Result is robust against the choice of correlations
- <u>High level of compatibility</u> between ATLAS and CMS, and between different channels

E. Canonero, G. Cowan [arXiv:2407.05322]

Combination was found to be very stable across a wide range of assumptions on possible errors-on-errors

Matteo M. Defranchis (CERN)

L		
21	te	

ATLAS+CMS total ATLAS+CMS combined stat uncertainty stat total uncertainty **ATLAS** dilepton 7 TeV lepton+jets 7 TeV all-jets 7 TeV dilepton 8 TeV lepton+jets 8 TeV all-jets 8 TeV combined CMS dilepton 7 TeV lepton+jets 7 TeV all-jets 7 TeV dilepton 8 TeV lepton+jets 8 TeV all-jets 8 TeV single top 8 TeV J/ψ 8 TeV secondary vertex 8 TeV combined ATLAS+CMS LHCtopWG dilepton lepton+jets ┠┼┯┼┨ ┠┼┯┼ all-jets other combined 165 170 175 m_t [GeV]

√s = 7,8 TeV

stat

 $m_t \pm \text{total} (\pm \text{stat} \pm \text{syst}) [GeV]$

 $173.79 \pm 1.42 (\pm 0.54 \pm 1.31)$ $172.33 \pm 1.28 (\pm 0.75 \pm 1.04)$ $175.06 \pm 1.82 (\pm 1.35 \pm 1.21)$ $172.99 \pm 0.84 (\pm 0.41 \pm 0.74)$ $172.08 \pm 0.91 (\pm 0.39 \pm 0.82)$ $173.72 \pm 1.15 (\pm 0.55 \pm 1.02)$ $172.71 \pm 0.48 (\pm 0.25 \pm 0.41)$

 $172.50 \pm 1.58 (\pm 0.43 \pm 1.52)$ $173.49 \pm 1.06 (\pm 0.43 \pm 0.97)$ $173.49 \pm 1.41 (\pm 0.69 \pm 1.23)$ $172.22 \pm 0.95 (\pm 0.18 \pm 0.94)$ $172.35 \pm 0.48 (\pm 0.16 \pm 0.45)$ $172.32 \pm 0.62 (\pm 0.25 \pm 0.57)$ $172.95 \pm 1.20 (\pm 0.77 \pm 0.93)$ $173.50 \pm 3.14 (\pm 3.00 \pm 0.94)$ $173.68 \pm 1.12 (\pm 0.20 \pm 1.11)$ $172.52 \pm 0.42 (\pm 0.14 \pm 0.39)$

 $172.30 \pm 0.59 (\pm 0.29 \pm 0.51)$ $172.45 \pm 0.36 (\pm 0.17 \pm 0.32)$ $172.60 \pm 0.45 (\pm 0.26 \pm 0.36)$ $173.53 \pm 0.77 (\pm 0.43 \pm 0.64)$ $172.52 \pm 0.33 (\pm 0.14 \pm 0.30)$ $180 \qquad 1$

	N() =		
1.00.0			
0.00			
72.5 GeV			
1 V 1			
		16	
		15	
8 0.9			
	0		
	1		

Combination weights and channel correlations

				ATI	LAS							CMS				
	_	2	.011 (7 Te	eV)	2	012 (8 Te	V)		2011 (7	TeV)			2012	(8 TeV)		
Full combination		dil	lj	aj	dil	lj	aj	dil	lj	aj	dil	lj	aj	t	J/ψ	vtx
	Pull	+0.93	-0.15	+1.43	+0.61	-0.51	+1.09	-0.01	+0.96	+0.71	-0.33	-0.47	-0.37	+0.38	+0.31	1 + 1.08
	Weight	-0.02	+0.07	+0.00	+0.16	+0.17	+0.03	-0.08	-0.01	+0.03	+0.12	+0.34	+0.12	-0.03	+0.01	1 + 0.08
				AT	LAS							CMS				
			2011 (7 T	TeV)	2	2012 (8 Te	V)		2011 (77	ſeV)			2012 ((8 TeV)		
		dil	lj	aj	dil	lj	aj	dil	lj	aj	dil	lj	aj	t	J/ψ	vtx
2D combination	11	+0.02	+0.03	-0.07	+0.55	+0.18	-0.08	+0.10	-0.02	-0.07	+0.33	-0.19	+0.22	-0.08	< 0.01	+0.08
	lj	-0.04	+0.09	+0.01	+0.09	+0.18	+0.03	-0.10	+0.03	+0.03	+0.05	+0.71	-0.06	-0.06	+0.01	+0.06
	aj	-0.03	+0.08	+0.05	+0.04	+0.17	+0.15	-0.13	-0.13	+0.13	+0.12	-0.12	+0.67	-0.05	+0.01	+0.04
	Other	+0.02	+0.05	+0.03	+0.02	+0.12	+0.04	-0.18	-0.04	+0.10	+0.14	-0.12	-0.18	+0.46	+0.05	+0.49
		ATLAS									CMS					
			2011 (7	7 TeV)		2012 (8 T	TeV)		2011 (7	ГeV)			2012 (8	3 TeV)		
Per-channel		dil	lj	aj	dil	lj	aj	dil	lj	aj	dil	lj	aj	t	J/ψ	vtx
combination	$m_{\rm t}^{\rm ATLA}$	s <0.0	l +0.16	6 +0.04	+0.33	8 +0.36	+0.11	-0.05	-0.07	+0.03	+0.03	-0.11	+0.14	-0.03	+0.01	+0.05
	$m_{\rm t}^{\rm CMS}$	-0.04	4 +0.01	1 - 0.03	+0.04	+0.04	-0.02	-0.10	+0.02	+0.04	+0.18	+0.67	+0.10	-0.04	+0.01	+0.11
			(dil	lj	aj	Other				1,-			•		
Don chonnol.	-	dil		1.00	0.29	0.24	< 0.01				m_{t}^{κ}	= 2	W	m_t'	+	$\sum \lambda_j$
correlations		lj		0.29	1.00	0.59	0.31					ie	$\equiv k$		Ĵ	ſ∉k
correlations		lj aj		0.29 0.24	1.00 0.59	0.59 1.00	0.31 0.34				\ \/i+k	ie N		_ 1	j	¢∉k

Matteo M. Defranchis (CERN)

- 1.00

$$m_{t}^{k} = \sum_{i \in k} w_{i} m_{t}^{i} + \sum_{j \notin k} \lambda_{j} m_{t}^{j}$$

with $\sum_{i} w_{i} = 1$ and $\sum_{j} \lambda_{j} = 0$

Inputs

				ATLAS					
	20	2011 (7 TeV)			2012 (8 TeV)				
	dil	lj	aj	dil	lj	aj	comb.		
m _t	173.79	172.33	175.06	172.99	172.08	173.72	172.71		
JES 1	0.54	0.33	0.38	0.35	0.28	0.40	0.18		
JES 2	0.30	0.30	0.20	0.41	0.39	0.42	0.11		
JES 3	0.43	0.07	0.24	0.08	0.05	0.12	0.07		
b-JES	0.68	0.06	0.62	0.30	0.03	0.34	0.17		
g-JES	0.03	0.28	0.10	0.02	0.21	0.05	0.02		
1-JES	0.02	0.24	0.02	0.01	0.10	0.06	0.01		
JER	0.19	0.22	0.01	0.09	0.20	0.10	0.09		
Leptons	0.13	0.04	—	0.14	0.16	0.01	0.08		
b tagging	0.07	0.50	0.16	0.04	0.38	0.10	0.16		
$p_{\mathrm{T}}^{\mathrm{miss}}$	0.04	0.15	0.02	0.01	0.05	0.01	0.04		
Pileup	0.01	0.02	0.02	0.05	0.15	0.01	0.07		
Trigger	0.01		0.01		0.01	0.08	0.01		
ME generator	0.26	0.22	0.30	0.09	0.16	0.18	0.13		
QCD radiation	0.47	0.32	0.22	0.23	0.08	0.10	0.07		
Hadronization	0.53	0.18	0.50	0.22	0.15	0.64	0.01		
Color reconnection	0.14	0.11	0.22	0.03	0.19	0.12	0.08		
Underlying event	0.05	0.15	0.08	0.10	0.08	0.12	0.03		
PDF	0.10	0.25	0.09	0.05	0.09	0.09	0.06		
Background (data)	0.04	0.11	0.35	0.07	0.05	0.17	0.04		
Background (MC)	0.01	0.29	—	0.03	0.13		0.07		
Method	0.09	0.11	0.42	0.05	0.13	0.11	0.06		
Other	0.07	0.12	0.24	0.02	0.10	0.03	0.06		
Total systematic	1.31	1.04	1.21	0.74	0.82	1.02	0.41		
Statistical	0.54	0.75	1.35	0.41	0.39	0.55	0.25		
Total	1.42	1.28	1.82	0.84	0.91	1.15	0.48		

Matteo M. Defranchis (CERN)

	CMS									
	2	011 (7 Te	V)			2012	(8 TeV)			comb
	dil	lj	aj	dil	lj	aj	t	J/ψ	vtx	COIIID
m _t	172.50	173.49	173.49	172.22	172.35	172.32	172.95	173.50	173.68	172.52
JES 1	0.77	0.24	0.69	0.31	0.10	0.16	0.40	< 0.01	0.11	0.06
JES 2	0.54	0.02	0.35	0.17	0.12	0.19	0.21	< 0.01	0.13	0.10
JES 3	0.06	0.01	0.08	0.03	0.01	0.02	0.05	< 0.01	0.01	0.02
b-JES	0.70	0.61	0.49	0.37	0.32	0.29	0.38			0.25
g-JES				0.07	0.08	0.02				0.04
1-JES		_		0.04	0.06	0.01	0.07	_		0.0
CMS JES 1	0.58	0.11	0.58	_						0.04
JER	0.14	0.23	0.15		0.03	0.02	0.05	< 0.01	0.05	0.02
Leptons	0.14	0.02		0.25	0.01		0.05	0.10	0.24	0.02
b tagging	0.09	0.12	0.06	0.01	0.06	0.02	0.10	_	0.02	0.03
$p_{\mathrm{T}}^{\mathrm{miss}}$	0.12	0.06		0.01	0.04		0.15		_	0.0
Pileup	0.11	0.07	0.06	0.05	0.06	0.06	0.14	0.07	0.05	0.03
Trigger		—	0.24	—	—	0.01		0.02	—	0.02
ME generator	0.04	0.02	0.19	0.07	0.12	0.16		0.37	0.42	0.14
QCD radiation	0.58	0.30	0.33	0.24	0.09	0.18	0.35	0.74	0.20	0.10
Hadronization		_		0.38	0.01	0.04	_	0.30	0.54	0.02
CMS b hadron ${\cal B}$				0.12	0.16	0.13	0.15	_	0.16	0.12
Color reconnection	0.13	0.54	0.15	0.13	0.01	0.16	0.05	0.12	0.08	0.03
Underlying event	0.05	0.15	0.20	0.11	0.08	0.14	0.20	0.13		0.05
PDF	0.09	0.07	0.06	0.17	0.04	0.03	0.11	0.11	0.04	< 0.02
CMS top quark $p_{\rm T}$				0.51	0.02	0.06				0.02
Background (data)			0.13		_	0.20			0.44	0.06
Background (MC)	0.05	0.13	—	—	0.03	—	0.17	0.01	—	0.02
Method	0.40	0.06	0.13	_	0.04	0.06	0.39	0.22	0.62	0.09
Other		—	—	0.03	—	—	0.25	0.09	0.09	0.02
Total systematic	1.52	0.97	1.23	0.94	0.45	0.57	0.93	0.94	1.11	0.39
Statistical	0.43	0.43	0.69	0.18	0.16	0.25	0.77	3.00	0.20	0.14
Total	1.58	1.06	1.41	0.95	0.48	0.62	1.20	3.14	1.12	0.42

Example correlation matrix: b-JES

	2	2011 (7	TeV)
	dil	lj	aj
dil	1.00	1.00	1.00
lj	1.00	1.00	1.00
aj	1.00	1.00	1.00
dil	1.00	1.00	1.00
lj	1.00	1.00	1.00
aj	1.00	1.00	1.00
dil	0.85	0.85	0.85
lj	0.85	0.85	0.85
aj	0.85	0.85	0.85
dil	0.85	0.85	0.85
lj	0.85	0.85	0.85
aj	0.85	0.85	0.85
t	0.85	0.85	0.85
J/ψ	0.85	0.85	0.85
vtx	0.85	0.85	0.85

All correlation matrices can be found on the public webpage and will soon be available in the HepData record

Matteo M. Defranchis (CERN)

ATLAS

Ľ	AS				CMS									
	20)12 (8 T	leV)	 	2011 (7	TeV)		2012 (8 TeV)						
	dil	lj	aj	dil	lj	aj	dil	lj	aj	t	J/ψ	7		
	1.00	1.00	1.00	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0		
	1.00	1.00	1.00	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0		
	1.00	1.00	1.00	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0		
	1.00	1.00	1.00	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0		
	1.00	1.00	1.00	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0		
	1.00	1.00	1.00	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0		
	0.85	0.85	0.85	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1		
	0.85	0.85	0.85	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1		
	0.85	0.85	0.85	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1		
	0.85	0.85	0.85	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1		
	0.85	0.85	0.85	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1		
	0.85	0.85	0.85	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1		
	0.85	0.85	0.85	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1		
	0.85	0.85	0.85	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1		
	0.85	0.85	0.85	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1		

vtx .85).85).85).85).85).85 00.1 00.1 00.1 00.1 1.001.0000.1 .00 00.1

Example correlation matrix: ME scale

	ATLAS						CMS								
	2011 (7 TeV)			2012 (8 TeV)			2011 (7 TeV)			2012 (8 TeV)					
	dil	lj	aj	t	J/ψ										
dil	1.00	1.00	-1.00	1.00	1.00	1.00	-0.50	-0.50	-0.50	0.50	-0.50	-0.50	0.50	-0.50	
lj	1.00	1.00	-1.00	1.00	1.00	1.00	-0.50	-0.50	-0.50	0.50	-0.50	-0.50	0.50	-0.50	
aj	-1.00	-1.00	1.00	-1.00	-1.00	-1.00	0.50	0.50	0.50	-0.50	0.50	0.50	-0.50	0.50	
dil	1.00	1.00	-1.00	1.00	1.00	1.00	-0.50	-0.50	-0.50	0.50	-0.50	-0.50	0.50	-0.50	
lj	1.00	1.00	-1.00	1.00	1.00	1.00	-0.50	-0.50	-0.50	0.50	-0.50	-0.50	0.50	-0.50	
aj	1.00	1.00	-1.00	1.00	1.00	1.00	-0.50	-0.50	-0.50	0.50	-0.50	-0.50	0.50	-0.50	
dil	-0.50	-0.50	0.50	-0.50	-0.50	-0.50	1.00	1.00	1.00	-1.00	1.00	1.00	-1.00	1.00	
lj	-0.50	-0.50	0.50	-0.50	-0.50	-0.50	1.00	1.00	1.00	-1.00	1.00	1.00	-1.00	1.00	
aj	-0.50	-0.50	0.50	-0.50	-0.50	-0.50	1.00	1.00	1.00	-1.00	1.00	1.00	-1.00	1.00	
dil	0.50	0.50	-0.50	0.50	0.50	0.50	-1.00	-1.00	-1.00	1.00	-1.00	-1.00	1.00	-1.00	
lj	-0.50	-0.50	0.50	-0.50	-0.50	-0.50	1.00	1.00	1.00	-1.00	1.00	1.00	-1.00	1.00	
aj	-0.50	-0.50	0.50	-0.50	-0.50	-0.50	1.00	1.00	1.00	-1.00	1.00	1.00	-1.00	1.00	
t	0.50	0.50	-0.50	0.50	0.50	0.50	-1.00	-1.00	-1.00	1.00	-1.00	-1.00	1.00	-1.00	
J/ψ	-0.50	-0.50	0.50	-0.50	-0.50	-0.50	1.00	1.00	1.00	-1.00	1.00	1.00	-1.00	1.00	
vtx	-0.50	-0.50	0.50	-0.50	-0.50	-0.50	1.00	1.00	1.00	-1.00	1.00	1.00	-1.00	1.00	

All correlation matrices can be found on the public webpage and will soon be available in the HepData record

Matteo M. Defranchis (CERN)

