

[<u>2406.03976</u>] (submitted to ROPP) [<u>CMS-PAS-TOP-23-007</u>]

Measurement of the polarization, spin correlation, and entanglement between top quark pairs

ICHEP24

July 20, 2024

Top Quark Physics

 Top quark is the heaviest fundamental particle discovered thus far: m_t =172.52±0.33 GeV

• LHC is a top quark factory (<u>100m+</u> thus far)

- Top Quark Spin Correlations
- Spin correlations are dependent on **production mode** $(gg vs. q\bar{q})$ and higher orbital momenta \rightarrow function of e.g. Θ_t , $m(t\bar{t})$
- Top quark spin cannot be measured directly
- Fully preserved in charged leptonic and down-type quark decays of W boson

Measurement of Top Quark Spin Density Matrix in dilepton

• Spin density matrix fully captured by a four-fold angular distribution $1 d^4 \sigma = 1$

$$\frac{1}{\sigma d\Omega d\overline{\Omega}} = \frac{1}{4\pi^2} \left(1 + \kappa \mathbf{P} \cdot \Omega + \bar{\kappa} \mathbf{P} \cdot \Omega - \kappa \bar{\kappa} \Omega \cdot (\mathbb{C} \Omega) \right)$$

$$Polarization \mathbf{P}/\mathbf{P} = \begin{pmatrix} P_k \\ P \end{pmatrix} \text{Spin Correlation } (\mathbf{C} = \begin{pmatrix} C_{kk} & C_{kr} \\ C & K \end{pmatrix}$$

- Spin Polarization $\mathbf{P}/\overline{\mathbf{P}} = \begin{pmatrix} P_r \\ P_n \end{pmatrix}$ Spin Correlation $\mathbb{C} = \begin{pmatrix} C_{rk} & C_{rr} & C_{rn} \\ C_{nk} & C_{nr} & C_{nn} \end{pmatrix}$
- Can integrate above four-fold angular distribution to get 1D distributions for each spin coefficient

$$\frac{1}{\sigma}\frac{d\sigma}{dx} = \frac{1}{2}(1 + [\text{Coef.}]x)f(x)$$

[PRD 100 (2019) 072002]

POWHEGV2 + PYTHIA8

Measurement of Top Quark Spin Density Matrix in dilepton

CMS

- Data

- SM predicts zero polarization for $t\bar{t}$ (< 10^{-2}) QCD is CP even
 - Zero polarization \rightarrow zero slope at parton level

$$\frac{1}{\sigma} \frac{d\sigma}{d\cos\theta_{1/2}^i} = \frac{1}{2} \left(1 + P_i \cos\theta_{1/2}^i \right)$$

35.9 fb⁻¹ (13 TeV)

Measurement of Top Quark Spin Density Matrix in dilepton

- SM predicts non-zero correlation for $t\overline{t}$
 - Non-zero correlation \rightarrow asymmetry in $cos\theta_1^i cos\theta_2^j$ distribution at parton level

Measurement of Top Quark Spin Density Matrix in lepton+jets - Method

- Used e/μ +jets events with full Run II dataset
- Used DNN to perform jet-parton assignments
- W mass constraint to reconstruct neutrino
- Measured all 15 spin coefficients quantum state tomography
 - Used four-fold angular distribution of decay products $\Sigma_{tot} = \frac{d^4\sigma}{d\Omega d\overline{\Omega}}$

Measurement of Top Quark Spin Density Matrix in lepton+jets - Method $\int_{1000}^{1000} CMS Simulation Preliminary} \int_{10000}^{10000} Generator level LSm} \int_{10000}^{10000} Generator level Sm} \int_{10000}^{10000} Generator Hot Sm} \int_{10000}^{10000} Generator Hot Sm} \int_{10000}^{$

- Binned profile likelihood fit of Σ_{tot}
 - Σ_{tot} = linearly dependent on 15 spin coefficients
 - Reweighting Σ_m gives templates T_m with varied coefficients Q_m

generator-level

July 20, 2024

9

of Top Quark **Spin Density** Matrix in lepton+jets -Method

ICHEP24

[CMS-PAS-TOP-23-007]

[CMS-PAS-TOP-23-007]

138 fb⁻¹ (13 TeV) Measurement of **Top CMS** Preliminary inclusive Quark Spin Density Data $\Delta_{\rm F}=0.663\pm0.029$ - Powheg+P8 -0.062 ± 0.053 Matrix in lepton+jets c-1 ---- Powheg+H7 -0.0037 ± 0.0077 P_r ---- MG5+P8 Results 0.0080 ± 0.0063 P_n MiNNLO+P8 spin P_k 0.0135 ± 0.0068 polarizations -0.0168 ± 0.0078 $\overline{\mathsf{P}}_{\mathsf{r}}$ 0.0036 ± 0.0062 $\overline{\mathsf{P}}_{\mathsf{n}}$ • 15 spin coefficients 0.0143 ± 0.0067 $\overline{\mathsf{P}}_{\mathsf{k}}$ 0.028 ± 0.017 C_{rr} H • 3 x 2 spin polarizations - 0.330 ± 0.010 C_{nn} H $P_i(\overline{P}_i)$ 0.305 ± 0.020 H C_{kk} 0.014 ± 0.019 C_{nr}^{+} **H-**H 9 spin correlations - C_{ij} spin C_{rk}^+ -0.208 ± 0.035 correlations 0.009 ± 0.026 C_{nk}^{+} Constant normalization -0.016 ± 0.017 C_{nr} -"c" also fit C_{rk} -0.009 ± 0.030 C_{nk} 0.022 ± 0.026

-0.5 -0.4 -0.3 -0.2 -0.1

0.2

0

0.1

0.3

0.4

Measurement of Top Quark Spin Density Matrix in lepton+jets - Results

Measurement of full spin density matrix differentially in $m(t\bar{t})$, $|\cos \theta_t|$ and $p_T(t)$ agrees with the SM

How to probe entanglement

• What does it mean to be **<u>not</u>** entangled? Separable!

$$\psi\rangle = |a\rangle_A \otimes |b\rangle_B$$

- For pure states this is easy \rightarrow measure entanglement entropy
- At the LHC top quarks are produced in a mixed state and thus can be represented as a density operator

$$\rho = \frac{1}{4} \left[I_4 + \Sigma_i \left(B_i^+ \sigma^i \otimes I_2 + B_i^- I_2 \otimes \sigma^i \right) + \Sigma_{i,j} C_{ij} \sigma^i \otimes \sigma^j \right]$$

- Need to determine an entanglement witness, Δ
- Hard to show density operator is separable but you can "easily" show it is non-separable → entangled!

Peres, <u>Phys. Rev. Lett.</u> **77**, 1413 Horodecki, <u>Phys. Lett. A</u> **232**, 5

How to probe entanglement: Peres-Horodecki Criterion

- If a state is separable \rightarrow Unit trace, Hermitian, Eigenvalues ≥ 0
- Therefore, a state is entangled if the above conditions <u>don't</u> hold for the partial transpose of the spin density matrix, ρ
- A sufficient condition for **entanglement** using Peres-Horodecki Criterion:

$$\Delta = C_{nn} + |C_{kk} + C_{rr}| - 1 > 0 \quad [Eur. Phys. J. Plus 136, 907]$$

At low
$$m(t\bar{t})$$
At high $m(t\bar{t}) \& low | \cos \Theta_t |$ $C_{kk} > 0 \& C_{rr} > 0 \to tr[C] > 1$ $C_{kk} < 0 \& C_{rr} < 0 \to C_{nn} - C_{kk} - C_{rr} > 1$ $D = -\frac{tr[C]}{3}$ $\widetilde{D} = \frac{C_{nn} - C_{kk} - C_{rr}}{3}$ $D < -\frac{1}{3} \rightarrow$ entangled! $\widetilde{D} > \frac{1}{3} \rightarrow$ entangled!

Measure **D** or \tilde{D} to access entanglement information!

ICHEP24

How to discover **entangled** top quarks

- CMS probed both the boosted region and the production threshold region for entanglement
- Mostly timelike (spacelike) separated decays in production threshold (boosted) region

Measurement of Entanglement in Threshold Region - Method

- **Dileptonic** channel $(ee/\mu\mu/e\mu)$ w/ 2016 data
- Used m_{lh} method for reconstructing both neutrinos
- Measured D using a binned profile likelihood fit of $\cos \varphi$
 - Performed fit in: 0 $345 < m(t\bar{t}) < 400 \text{ GeV }$ $\beta_{z}(t\bar{t}) < 0.9$
- Performed the fit both including & excluding the ground state of toponium, η_t

[2406.03976] (submitted to ROPP)

Measurement of Entanglement in Threshold Region - Method

- Need to fit POI D
 - Q: How to create variations of D?
 - A: Generate top quark pairs with zero spin correlation $\rightarrow D = 0$
- Can create new samples with mixtures of SM and no spin corr.
- These mixtures only probe $[D_{SM}, 0] \rightarrow Mirror$ to probe $[-1, D_{SM}]$

[2406.03976] (submitted to ROPP)

Measurement of Entanglement in Threshold Region

- Large mismodeling seen for $m(t\bar{t}) \approx 345$ GeV [2406.03976] (submitted to ROPP)
- Consistent between dilepton & lepton+jets and CMS & ATLAS

Measurement of Entanglement in Threshold Region

[2406.03976] (submitted to ROPP)

- Large mismodeling seen for $m_{\rm t\bar{t}} \approx 345~{\rm GeV}$
- Excesses seen could be from toponium
- New (hypothetical) exciting SM resonance

 - Spin singlet \rightarrow Maximally entangled $t\bar{t}$ Exciting implications for entanglement measurements!
- Signal model includes spin and color singlet ${}^{1}S_{0}^{[1]}$

- Theory predictions with NRQCD
- Color singlet and octet contributions to spin singlet

Measurement of Entanglement in Threshold Region - Results

- Significance $> 5\sigma$
- Observation of entangled top quarks!

Measurement of Entanglement in Boosted Region - Results

[CMS-PAS-TOP-23-007]

- Measured \widetilde{D} to be 0.652 ± 0.052
 - 6.1 σ observation for entanglement in the **boosted region**!
- 90% of the top quark pairs are spacelike separated in the boosted region when they decay
- no interactions after decay for 90% of events
- Timelike separated events can interact resulting in entanglement
- If we say entanglement can only arise from timelike separated events:

$$\Delta_{E \ crit} = f \Delta_{E \ sep} + (1 - f) \Delta_{E \ max} = 0.9 * 1 + 0.1 * 3$$

$$\Delta_{E \ crit} = 1.2$$

5.4 σ observed for $3\widetilde{D} > 1.2!$

ICHEP24

Conclusion

- Top quarks are entangled both when decaying spacelike and timelike separated
- First inclusion of bound-state effects in the production threshold region via η_t
- Quantum tomography of top quarkantiquark pair in lepton+jets final states
- Start of quantum information studies in high energy physics
- New door into "old" physics

[2406.03976] (submitted to ROPP)

Thanks!

awildrid@purdue.edu

TITTT

Prague,

5

Spacelike separated entanglement

- First off, entanglement != violation of Bell inequality
- Because subsequent decays are lighter, spacelike separated events typically stay spacelike separated
- Closing locality loophole requirements:
 - 1. spacelike separated measurements
 - 2. Random measurement settings

Modified from [2402.07972]

July 20, 2024

Helicity Basis: Spin Quantization Axes $\{\hat{\mathbf{k}}, \hat{\mathbf{n}}, \hat{\mathbf{r}}\}$

- Helicity $\hat{\mathbf{k}}$ -axis: top quark direction in $t\overline{t}$ rest frame
- Transverse $\hat{\mathbf{n}}$ -axis: transverse to production plane

$$\widehat{\mathbf{n}} = \frac{\operatorname{sign}(\cos \Theta_{t})}{\sin \Theta_{t}} (\widehat{\mathbf{p}} \times \widehat{\mathbf{k}})$$

• **r**-axis: orthogonal to the other two axes

$$\hat{\mathbf{r}} = \frac{\operatorname{sign}(\cos \Theta_{t})}{\sin \Theta_{t}} (\hat{\mathbf{p}} - \hat{\mathbf{k}} \cos \Theta_{t})$$

- \hat{p} : direction of the incoming parton, i.e. the direction of the proton beam (z-direction in the laboratory frame)
- Θ_t : top quark scattering angle in $t\bar{t}$ rest frame

ATLAS top quark pair entanglement

- ATLAS observed entanglement last fall [arXiv:2311.07288]
- Significant differences to CMS
 - Calibrated results & entanglement boundary to particle-level
 - No toponium or electroweak corrections included in threshold treatment

Particle-level Invariant Mass Range [GeV]