

Multiboson Production and Polarisation Measurements With the ATLAS Detector

On Behalf of the ATLAS Collaboration

42nd International Conference on High Energy Physics Prague / Czech Republic 17.07.2024 - 24.07.2024

WELLE

Muhammad Alhroob

Outline

- Motivation
- $WZ\gamma$ results at 13 TeV using 140 fb⁻¹ of Run2
- $W\gamma\gamma$ results at 13 TeV using 140 fb⁻¹ of Run2
- ZZ production at 13.6 TeV using 29 fb⁻¹ of Run3

- ZZ polarization and CP results at 13 TeV using 140 fb⁻¹ of Run2
- WZ polarisation at high- P_T^Z using 13 TeV using 140 fb⁻¹ of Run2
- Summary

Notivation

Investigate the SM Electroweak Sector:

- Measurements of multiboson processes provide an important test of • the SM
- Deviations from predictions provide evidence of new physics • Set limits on anomalous quartic gauge couplings via interpretations:
- Study non-abelian structures through triple and quartic gauge couplings •
 - EFT and resonant searches

Longitudinal polarisation:

- Directly probes the Electroweak Symmetry Breaking mechanism
- Sensitive to new physics
- The first step toward longitudinal VBS

Solenoid magnet

44m

WZy Production

Phys. Rev. Lett. 132 (2024) 021802

Tile calorimeters

LAr hadronic end-cap and forward calorimeters

Pixel detector

LAr electromagnetic calorimeters

magnet | Transition radiation tracker

Targeting the $WWZ\gamma$ quartic gauge coupling:

- 3 leptons (e, μ) : $P_T > 30, 20, 20$ GeV
- Z lepton pair with $m_{\ell\ell} > 80 \text{ GeV}$
- E_T^{miss} > 20 GeV
- 1 photon, $P_T > 15$ GeV

SR definition

	SR definition	$ZZ\gamma$ CR definition	$ZZ(e \rightarrow \gamma)$ CR definition
Lepton veto	no additional leptons with $p_{\rm T}^{\ell_4} > 10~GeV$	one additional lepton with $p_{\rm T}^{\ell_4} > 10~GeV$	same as SR
Z-leptons assignment	smallest $ m_{\ell\ell} - m_Z $	same as SR	same as SR
ΔR	$\Delta R(\ell, \gamma) > 0.4, \Delta R(\mu, e) > 0.2$	same as SR	same as SR
$ZZ(e \rightarrow \gamma)$ rejection	$ m(e_W, \gamma) - m_Z > 10 \ GeV$	same as SR	$ m(e_W, \gamma) - m_Z < 10 GeV$
Missing $p_{\rm T}$	$E_{\rm T}^{\rm miss} > 20 \ GeV$	no requirement	$E_{\rm T}^{\rm miss} < 20 \ GeV$
Z candidate mass	$m_{\ell\ell} > 81GeV$	$m_{\ell\ell} > 40GeV$	same as SR

- Non-prompt bkg. (WZ, ZZ, $Z\gamma$, $t\bar{t}\gamma$): estimated using a data-driven "Fake Factor" method
- Prompt bkg. ($ZZ\gamma$): estimated using MC samples and CRs

WZY Process

- A profile-likelihood fit is performed on three bins to extract the signal and $ZZ/ZZ\gamma$ backgrounds
- $WZ\gamma$ process observed (expected) with **6.3**σ (5σ)
 - consistent with the SM prediction within 1.5σ
- $\mu_{WZ_{\gamma}} = 1.34 \pm 0.20$ (stat.) ± 0.10 (syst.) ± 0.07 (theory)
- $\sigma_{WZ\gamma}^{Fid}$ = 2.01 ± 0.30 (stat.) ± 0.16 (syst.) fb
 - Photon identification and isolation are the biggest systematic uncertainties

WZy Observation

Process	SR	$ZZ\gamma$ CR	$ZZ(e \to \gamma) \ \mathrm{CR}$
$WZ\gamma$	92 ± 15	0.21 ± 0.07	0.56 ± 0.14
$ZZ\gamma$	10.7 ± 2.3	23 ± 5	1.8 ± 0.4
$ZZ(e \to \gamma)$	$3.0~\pm~0.6$	0.028 ± 0.020	30 ± 6
$Z\gamma\gamma$	1.05 ± 0.32	0.15 ± 0.06	0.29 ± 0.10
Nonprompt background	30 ± 6	-	-
Pileup γ	$1.9~\pm~0.7$	-	-
Total yield	139 ± 12	23 ± 5	33 ± 6
Data	139	23	33

Solenoid magnet

44m

Wyy Production

Phys. Lett. B 848 (2024) 138400

Tile calorimeters

LAr hadronic end-cap and forward calorimeters

Pixel detector

LAr electromagnetic calorimeters

magnet | Transition radiation tracker

- Sensitive to the $WW\gamma\gamma$ and $WW\gamma$ gauge coupling
- An important background for $WH \rightarrow W\gamma\gamma$ **Event selection:**
- 2 isolated photons, $P_T > 20$ GeV
- 1 isolated electron (muon), $P_T > 20$ (25) GeV
- $E_T^{miss} > 25 \text{ GeV \& } m_T(W) > 40 \text{ GeV}$
- $Z\gamma$ veto: $m(l\gamma), m(l\gamma\gamma) \notin [82,100] \text{ GeV}$ && $pT(l\gamma\gamma) > 30 \text{ GeV}$

Wyy Process

Source	SR	TopCR
$W\gamma\gamma$	410 ± 60	28 ± 5
Non-prompt $j \to \gamma$	420 ± 50	42 ± 20
Misidentified $e \to \gamma$	155 ± 11	120 ± 9
Multiboson ($WH(\gamma\gamma), WW\gamma, Z\gamma\gamma$)	76 ± 13	5.2 ± 1.7
Non-prompt $j \to \ell$	35 ± 10	—
Top $(tt\gamma, tW\gamma, tq\gamma)$	30 ± 7	136 ± 32
Pileup	10 ± 5	—
Total	1136 ± 34	332 ± 18
Data	1136	333

- A profile-likelihood fit is performed on SR and TopCR
- $W\gamma\gamma$ observed significance with 5.6 σ
- The fiducial cross section is measured for $W \rightarrow e \nu / \mu \nu$ with a total 17% uncertainty
 - The $j \rightarrow \gamma$ background estimate is the dominant systematic uncertainty

Wyy Observation

Solenoid magnet

44m

Run3 ZZ Production at 13.6 TeV

Phys. Lett. B 855 (2024) 138764

Tile calorimeters

LAr hadronic end-cap and forward calorimeters

Pixel detector

LAr electromagnetic calorimeters

nagnet | Transition radiation tracker

- Key channel to search anomalous neutral TGCs (aTGCs)
- Study the off-shell Higgs boson production

Fiducial and differential cross-sections are measured in 4 lepton final states

- 4 isolated leptons (e, μ), $P_T > 27$, 10, 10, 10 GeV
- 2 Z-lepton pairs
 - $66 < m_{\ell\ell} < 116$ GeV for both pairs
- $m_{4\ell}$ > 180 GeV

Process	$q\bar{q} \rightarrow ZZ$	$gg \rightarrow ZZ$	EW $qq \rightarrow ZZ + 2j$	$t\bar{t}Z$	VVV	Reducible	Total	Data
Yield	515 ± 50	74 ± 44	4.7 ± 1.0	5.5 ± 0.8	2.1 ± 0.2	25.4 ± 8.1	626 ± 88	625

- Prompt back.: triboson and $t\bar{t}Z$
- Non-prompt back. : Z+jets, WZ, $t\bar{t}$ using the data-driven "Fake Factor" method

ZZ @ 13.6 TeV

- A single bin is used to extract the fiducial cross section
- Extrapolated to the total cross section with • $66 < m_Z < 116$ GeV for both Z bosons

	Measurement	MC prediction	MATRIX predic
Fiducial	$36.7 \pm 1.6(\text{stat}) \pm 1.5(\text{syst}) \pm 0.8(\text{lumi}) \text{ fb}$	$36.8 \stackrel{+4.3}{_{-3.5}} { m fb}$	36.5 ± 0.7 fb
Total	$16.8 \pm 0.7 (\text{stat}) \pm 0.7 (\text{syst}) \pm 0.4 (\text{lumi}) \text{ pb}$	$17.0 \stackrel{+1.9}{_{-1.4}} \text{ pb}$	$16.7\pm0.5~{ m pb}$

ZZ @ 13.6 TeV

Iterative Bayesian unfolding: $m_{4\ell}$ and $P_T(4\ell)$

ZZ Polarisation and CP Studies JHEP 12 (2023) 107 Toroid magnets

Solenoid magnet

Tile calorimeters

LAr hadronic end-cap and

LAr electromagnetic calorimeters

ZZ Polarisation at 13 TeV

- The polarisation measurement of massive weak bosons directly probes the Electroweak Symmetry-Breaking mechanism
 - Provides unique sensitivity to physics BSM
- Measurement of longitudinally polarised $Z_L Z_L$ bosons in $ZZ \rightarrow 4\ell$ final states ($\ell = e, \mu$)
- BDT is trained to distinguish the $Z_L Z_L$ from $Z_L Z_T$ and $Z_T Z_T$ polarisation components

• $\mu_{Z_L Z_L} = 1.15 \pm 0.27 (\text{stat.}) \pm 0.11 (\text{syst.})$ with 4.3σ (3.8σ) significance

Fiducial cross section = 2.45 ± 0.60 fb

• Interferences and modelling are the largest systematic uncertainties

ZZ CP Properties

- Differential cross-section as a function of Optimal CP-sensitive observable •
 - $T_{yz,1(3)} = sin(\Phi_{1(3)}) \times cos(\theta_{1(3)})$
 - gauge coupling (aNTGC)

First limits @ 95% CL on aNTGC

• Symmetric in the SM, but asymmetry in the presence of a CP-odd anomalous triple

romatar	Interference only		Full		
ameter	Expected	Observed	Expected	Observed	
	[-0.16, 0.16]	[-0.12, 0.20]	[-0.013, 0.012]	[-0.012, 0.012]	
	[-0.30, 0.30]	[-0.34, 0.28]	[-0.015, 0.015]	[-0.015, 0.015]	

Solenoid magnet

44m

WZ Polarisation $O High p_T^Z$ arXiv:2402.16365Accepted by Phys. Rev. Lett.

Tile calorimeters

LAr hadronic end-cap and forward calorimeters

Pixel detector

LAr electromagnetic calorimeters

nagnet Transition radiation tracker

WZ Polarisation @ High p_T^Z

- Measure joint-polarisation states at a high P_T^Z : W_0Z_0 , W_0Z_T, W_TZ_0, W_TZ_T
 - The first study to probe the energy dependence of polarisation fractions
- Radiation Amplitude Zero (RAZ) effect in WZ production •

Dedicated BDTs trained in each of the two P_T^Z regions to discriminate W_0Z_0 from the rest

Training variable	Definition
$\Delta Y(\ell_W Z)$	Rapidity difference be
p_T^{WZ}	Transverse momentur
$p_T(\ell_W)$	Transverse momentur
$p_T(\ell_2^Z)$	Transverse momentur
$E_T^{{ m miss}}$	Missing transverse m
$\cos \theta_{\ell_Z}$	Cosine of the angle of
$\cos \theta_{\ell_W}$	Cosine of the angle of

etween the W lepton and Z boson m of the WZ system m of the W lepton m of the subleading Z lepton omentum f the Z lepton in the WZ rest frame w.r.t the z-axis f the W lepton in the WZ rest frame w.r.t. the z-axis

WZ Polarisation @ High p_T^2

- 5.2 σ observation of f_{00} in the $100 < P_T^Z < 200$ **GeV** region
- 3.2 σ evidence of f_{00} in the $P_T^Z > 200$ GeV region using 2 parameters fit
- Leading systematic uncertainty from QCD higher order effects

3 parameters fit configurations: f_{00} , $f_{0T} + f_{T0}$, f_{TT}

	Measurement			
	$100 < p_T^Z \le 200 \text{ GeV}$	$p_T^Z > 200 \text{ GeV}$		
f_{00}	$0.19 \pm_{0.03}^{0.03} (\text{stat}) \pm_{0.02}^{0.02} (\text{syst})$	$0.13 \pm_{0.08}^{0.09} (\text{stat}) \pm_{0.02}^{0.02} (\text{syst})$		
f_{0T+T0}	$0.18 \pm_{0.08}^{0.07} (\text{stat}) \pm_{0.06}^{0.05} (\text{syst})$	$0.23 \pm_{0.18}^{0.17} (\text{stat}) \pm_{0.10}^{0.06} (\text{syst})$		
f_{TT}	$0.63 \pm_{0.05}^{0.05} (\text{stat}) \pm_{0.04}^{0.04} (\text{syst})$	$0.64 \pm_{0.12}^{0.12} (\text{stat}) \pm_{0.06}^{0.06} (\text{syst})$		
f_{00} obs (exp) sig.	5.2 (4.3) σ	1.6 (2.5) σ		

2 parameters fit configurations: f_{00}, f_{xx}

	Measurement		
	$100 < p_T^Z \le 200 \text{ GeV}$	$p_T^Z > 200 \text{ GeV}$	
f_{00}	$0.17 \pm_{0.02}^{0.02} (\text{stat}) \pm_{0.02}^{0.01} (\text{syst})$	$0.16 \pm_{0.05}^{0.05} (\text{stat}) \pm_{0.03}^{0.02} (\text{syst})$	
f_{XX}	$0.83 \pm_{0.02}^{0.02} (\text{stat}) \pm_{0.01}^{0.02} (\text{syst})$	$0.84 \pm_{0.05}^{0.05} (\text{stat}) \pm_{0.02}^{0.03} (\text{syst})$	
f_{00} obs (exp) sig.	7.7 (6.9) <i>o</i>	3.2 (4.2) <i>o</i>	

Radiation Amplitude Zero Effect

- At LO, $W_T Z_T$ the cross-section drops to zero when θ_V approaches $\pi/2$
 - direction
- Observed in $\Delta Y(WZ)$ and $\Delta Y(I_WZ)$
- Depth variable to quantify dip: $D = 1 2 \cdot \frac{N(|\Delta Y| < 0.5)}{N(0.5 < |\Delta Y| < 1.5)}$ \bullet

• The scattering angle of the W in the WZ rest frame relative to the incoming antiquark

D > 0, indicates the existence of a dip

Observed in the P_T^{WZ} regions

Summary

- electroweak theory and its symmetry-breaking mechanism
- Multiboson production processes have relatively small cross sections at the LHC and is sensitive to new physics and anomalous triple and quartic gauge couplings
- Presented results are consistent with the SM predictions

• Measurements of multiboson production processes test gauge interactions within the SM

