

Institute of High Energy Physics Chinese Academy of Sciences

Measurements of W, Z and Drell-Yan processes in ATLAS

Xuewei Jia on behalf of the ATLAS Collaboration 18. Jul, Prague, ICHEP2024

W, Z and Drell-Yan measurements

Xuewei Jia

Albajar et al. (UA1 Collaboration), Z. Phys. C 44, 15 (1989).

Long history of W, Z measurements

- Stringent tests of the electroweak theory and perturbative and non-perturbative QCD
- Provides important information on the partonic structure Set limit to new physics
 - Milestone for more precision fundamental parameters measurements, e.g. W mass

ATLAS miscellanea for this talk:

- W, Z cross section measurement
- Low- and high-mass Drell-Yan
- W hadronic decay mode search
- W, Z transverse momentum measurement

中国科学院高能物理研究所 Institute of High Energy Physics Chinese Academy of Sciences

Low-order Drell-Yan process

(b) More realistic Drell-Yan diagram.

Xuewei Jia

Drell-Yan Process

LHC parton kinematics

W, Z topology at ATLAS

Typical W, Z selection: Electron and muon: $p_T^l > 25$ GeV, tight isolation Z-boson event: 2 opposite sign, same flavor leptons, 66 < m_{ll} <116 GeV W-boson event: exactly 1 lepton, E_T^{miss} > 25 GeV, m_T^W > 50 GeV

Xuewei Jia

around Z-resonance

Xuewei Jia

Low- and high-mass Drell-Yan

- off-shell m_{ll} , dominant by electromagnetic coupling of quark to the virtual photon (γ_*)
- different sensitivity to the up- and down-type quarks

Xuewei Jia

- Data

Jul 18, Prague, ICHEP 2024

 $|\Delta \eta_{\parallel}|$

Sys. uncertainty

Total uncertainty

Low mass and high mass Drell-Yan

- off-shell m_{ll} , dominant by electromagnetic coupling of quark to the virtual photon (γ_*)
- different sensitivity to the up- and down- type quarks

JHEP 08 (2016) 009 JHEP 06 (2014) 112

Xuewei Jia

ATLAS - Data --HERAPDF2.0

Low mass and high mass Drell-Yan

- off-shell m_{ll} , dominant by electromagnetic coupling of quark to the virtual photon (γ_*)
- different sensitivity to the up- and down- type quarks

JHEP 08 (2016) 009 JHEP 06 (2014) 112

Xuewei Jia

ATLAS - Data --HERAPDF2.0

First ATLAS Run-3 W and Z boson production measurement **NEW** Phys. Lett. B 854 (2024) 138725 New centre-of-mass energy 13.6 TeV, 29 \pm 2% fb^{-1} of data collected in 2022

- **Event Selection:** Standard WZ selection, slightly higher momentum (higher pileup)
- **Background estimation** EW and top-quark process: MC simulation Multi-jet: data driven
 - Fit Region (FR): Perform PLH fit using template obtained in control region(CR) isolation slices
 - Signal region (SR): Extrapolate from FR to SR using CR2/CR1

- Compare linear fit and quadratic fit as systematics

First ATLAS Run-3 W and Z boson production measurement

Measurement Strategy:

- Fiducial cross sections are extracted with **binned profile likelihood** fits using all channels: 2 Z-boson channels (ee and μμ) and 4 Wboson channels (e+v, e-v, μ +v and μ -v)
- Cross section ratio extracts as well by fitting with different parameterizations
- The total cross section: Fiducial / Acceptance

Dominant Uncertainty: MJ background, jet, ttbar modeling

Xuewei Jia

W: Luminosity, jet and MJ background Z : Luminosity, lepton reconstruction σ_{pred}^{fid} / σ_{meas}^{fid} ATLAS Total uncertainty (w/o luminosity) $\sqrt{s} = 13.6 \text{ TeV}, 29 \text{ fb}^{-1}$ 1.15 Total uncertainty 1.05 ATLAS √s = 13.6 TeV, 29 fb⁻¹ Data (stat.⊕ syst. CT18 CT18A 0.95 MSHT20 Ŵ W^+ PDF4LHC21(m=171.5 Ge\ PDF4LHC21(m=172.5 GeV 0.9 PDF4LHC21(m=173.5 GeV) ATLASpdf2 Good agreement with theory prediction (Inner uncert.: PDF only (NNLO+NNLL QCD+ NLO EW) 0.1 0.11 0.12 0.13 0.14 0.15 0.16 $R_{t\bar{t}/W^{\pm}} = \sigma_{t\bar{t}}^{fid} / \sigma_{W^{\pm}}^{fid}$

First ATLAS Run-3 W and Z boson production measurement

Measurement Strategy:

• Fiducial cross sections are extracted with **binned profile likelihood** fits using all channels: 2 Z-boson channels (ee and μμ) and 4 Wboson channels (e+v, e-v, μ +v and μ -v)

Same data/prediction agreement found in tt/Z measurement Phys. Lett. B 848 (2024) 138376

Xuewei Jia

Event selection: $W^{\pm} \rightarrow \pi^{\pm} \gamma, W^{\pm} \rightarrow K^{\pm} \gamma$: track+ photon $W^{\pm} \rightarrow \rho^{\pm} \gamma : \tau_{1-prong} + \text{photon}$ • $\rho^{\pm} \rightarrow \pi^{\pm} \pi^{0}$ indistinguishable to tau, except impact parameter

benefit from ATLAS refined algorithms

Search for the exclusive W boson hadronic decays

$$V^{\pm}
ightarrow
ho^{\pm} \gamma$$
 at \sqrt{s} = 13 TeV, 140 fb^{-1}

Larger integrated luminosity and CME w.r.t. CDF From pQCD to strongly-coupled QCD regime First ATLAS $W^{\pm} \rightarrow \pi^{\pm} \gamma$ search First $W^{\pm} \to K^{\pm} \gamma$, $W^{\pm} \to \rho^{\pm} \gamma$ search

Background:

- $Z \rightarrow e^+e^-$ background rejected with TRT track information and hadronic leakage
- Multijet: data driven method, sample from template that mimicking the data correlations

Submitted to PRL https://arxiv.org/abs/2309.15887 009

- No significant excess found
- Improve the previous upper limit on $B(W^{\pm} \rightarrow \pi^{\pm} \gamma)$ ~ a factor of four
- First upper limits on $W^{\pm} \to K^{\pm}\gamma$, $W^{\pm} \to \rho^{\pm}\gamma$.
- Constrain theoretical predictions based on the QCD factorization approach

Xuewei Jia

Joint fit across all channels with binned maximum likelihood fit S+B at W invariant mass region [60,110] GeV

	Number of events				
	Track-photon SR	Tau-photon S			
Multijet	632000 ± 2200	43200 ± 600			
$Z \rightarrow e^+ e^-$	6100 ± 1500	-200 ± 400			
$W^{\pm} ightarrow \pi^{\pm}/K^{\pm}\gamma$	1000 ± 800	_			
$W^{\pm} ightarrow ho^{\pm} \gamma$	-100 ± 400	-90 ± 240			
Data	638962	42918			

	95% CL upper limits				
Branching fraction	Expected $\times 10^{-6}$	Observed ×10 ⁻			
$\mathcal{B}(W^{\pm} ightarrow \pi^{\pm} \gamma)$	$1.2^{+0.5}_{-0.3}$	1.9			
$\mathcal{B}(W^{\pm} \to K^{\pm} \gamma)$	$1.1^{+0.4}_{-0.3}$	1.7			
$\mathcal{B}(W^{\pm} \to \rho^{\pm} \gamma)$	$6.0^{+2.3}_{-1.7}$	5.2			

Jul 18, Prague, ICHEP 2024

SR

Low pile-up data:

- \sqrt{s} = 5.02 TeV: Nov 2017, 255 ± 1% pb⁻¹
- \sqrt{s} = 13 TeV: Nov 2017 + Jun 2018, 335 ± 0.92% pb⁻¹
- Standard W and Z selection 1.45 M (5 TeV) and 4.35 M (13 TeV) W events 111 K (5 TeV) and 366 K (13 TeV) Z events

Boson transverse momentum reconstruction

Xuewei Jia

W and Z pT with low-pileup data

https://arxiv.org/abs/2404.06204

13 TeV W—> $\mu\nu$ candidate $m_T = 77 \text{ GeV}$ $u_T = 16 \text{ GeV}$

W and Z pT with low-pileup data

- Lepton and recoil calibration and MC dedicated to special low pile-up data conditions
- Standard background: EW and top background estimated from MC, Multijet estimated with data-driven method
- Bayesian unfolding of u_T in the W and $p_T(\ell \ell)$ in the Z
- Electron and muon channels combined with BLUE, good χ^2

Z acts as a cross check of recoil measurement

Xuewei Jia

➡ General agree with prediction - Further validation of the AZNLO Provide test and constrains for theory *Milestone for future next ATLAS low pile-up W mass measurement Save extrapolate WpT from Z. Reduce modelling uncertainty

Latest mW measurement in Jakub Kremer's talk

Summary

- Precision measurement of W, Z properties at ATLAS
 - Low- and high-mass Drell-Yan
 - First 13.6 TeV W, Z cross section measurement and their ratios
 - W exclusive decay search
 - Precision W, Z pT of low pile-up data
- They all provide stringent tests of the electroweak and QCD theory
- Key input and facilitating future ATLAS W mass measurement.

Xuewei Jia

Xuewei Jia

First ATLAS Run-3 W and Z boson production measurement

- New centre-of-mass energy 13.6 TeV, 29 \pm 2% fb^{-1} of data collected in 2022
- **Event Selection:** Standard WZ selection, slightly higher momentum **Background estimation**
- EW and top-quark process: MC simulation
- Multi-jet: data driven
 - FR: Perform PLH fit using template obtained in **CR** isolation slices
 - SR: Extrapolate from FR to SR using CR2/CR1

Fit region (FR)	Signal region (SR)
• Lepton $p_T > 27 \text{ GeV}$	• Lepton pT > 27 GeV
• $E_T^{\text{miss}} < 25 \text{ GeV}$	• $E_{T}^{miss} > 25 \text{ GeV}$
• $m_T^W < 50 \text{ GeV}$	• $m_{T}^{W} > 50 \text{ GeV}$
• Pass isolation	• Pass isolation
Control region 1 (CR1)	Control region 2 (CR2)
• Lepton $p_T > 27 \text{ GeV}$	• Lepton pT > 27 GeV
• $E_T^{\text{miss}} < 25 \text{ GeV}$	• $E_{T}^{miss} > 25 \text{ GeV}$
• $m_T^W < 50 \text{ GeV}$	• $m_{T}^{W} > 50 \text{ GeV}$
• Fail isolation	• Fail isolation

NEW Phys. Lett. B 854 (2024) 138725

- Combine from two discriminating variables E_T^{miss} and m_T^W
- Compare linear fit and quadratic fit as systematics

W and Z pT with low-pileup data

- Hadronic recoil:
 - than calorimeter reconstruction.
 - Calibrated with in-situ Z events

Xuewei Jia

Jul 18, Prague, ICHEP 2024

80

Category	$\sigma(Z \to ee)$	$\sigma(Z\to\mu\mu)$	$\sigma(Z \to \ell \ell)$	$\sigma(W^- \to e^- \bar{\nu})$	$\sigma(W^+\to e^+\nu)$	$\sigma(W^- \to \mu^- \bar{\nu})$	$\sigma(W^+ \to \mu^+ \nu)$
Luminosity	2.2	2.2	2.2	2.5	2.5	2.5	2.4
Pile-up	1.2	0.3	0.8	1.1	1.1	0.3	0.4
MC statistics	< 0.2	< 0.2	< 0.2	< 0.2	0.4	< 0.2	0.4
Lepton trigger	0.2	0.4	0.2	1.2	1.3	1.0	1.0
Electron reconstruction	1.4	-	0.9	0.7	0.8	-	_
Muon reconstruction	-	2.1	1.4	-	_	1.0	1.0
Multi-jet	-	_	-	2.9	2.4	1.3	1.1
Other background modelling	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	0.5	0.4
Jet energy scale	-	_	-	1.4	1.4	1.3	1.4
Jet energy resolution	-	_	-	< 0.2	0.3	0.2	0.2
NNJVT	-	_	-	1.6	1.5	1.3	1.3
$E_{\rm T}^{\rm miss}$ track soft term	-	_	-	< 0.2	0.4	< 0.2	< 0.2
PDF	0.2	0.2	< 0.2	0.8	0.8	0.6	0.5
QCD scale (ME and PS)	0.6	< 0.2	0.3	1.3	1.2	0.6	0.6
Flavour tagging	-	-	-	-	-	-	-
tī modelling	-	-	-	-	-	-	-
Total systematic impact [%]	3.0	3.1	2.7	5.0	4.5	3.8	3.6
Statistical impact [%]	0.04	0.03	0.02	0.02	0.01	0.01	0.01

Category	$\sigma(W^- \to \ell^- \bar{\nu})$	$\sigma(W^+ \to \ell^+ \nu)$	$\sigma(W^\pm \to \ell^\prime \nu)$	R_{W^+/W^-}	$R_{W^{\pm}/Z}$	$R_{t\bar{t}/W^{\pm}}$
Luminosity	2.5	2.4	2.4	< 0.2	0.3	< 0.2
Pile-up	0.5	0.7	0.6	< 0.2	< 0.2	< 0.2
MC statistics	< 0.2	0.2	< 0.2	< 0.2	< 0.2	< 0.2
Lepton trigger	1.0	0.9	0.9	< 0.2	0.7	0.8
Electron reconstruction	0.4	0.5	0.4	< 0.2	0.5	0.4
Muon reconstruction	0.6	0.6	0.6	0.2	0.8	0.6
Multi-jet	1.2	1.2	1.2	1.6	1.1	1.0
Other background modelling	0.4	0.4	0.4	< 0.2	0.3	0.9
Jet energy scale	1.3	1.3	1.3	< 0.2	1.3	1.3
Jet energy resolution	< 0.2	0.2	< 0.2	< 0.2	< 0.2	< 0.2
NNJVT	1.4	1.3	1.3	< 0.2	1.3	< 0.2
$E_{\rm T}^{\rm miss}$ track soft term	< 0.2	0.3	0.3	< 0.2	0.3	0.3
PDF	0.5	0.5	0.3	0.5	0.2	0.4
QCD scale (ME and PS)	0.8	0.7	0.6	< 0.2	0.7	0.7
Flavour tagging	_	_	-	_	_	< 0.2
tī modelling	_	_	-	-	-	1.1
Total systematic impact [%]	3.7	3.5	3.5	1.7	2.4	2.5
Statistical impact [%]	0.01	0.01	0.01	0.01	0.02	0.32

