## Precision measurements of Standard Model parameters in ATLAS

Jakub Kremer (DESY) for the ATLAS Collaboration

ICHEP 2024, Prague, 18.07.2024





#### Outline

for more details see talk by K. Schmieden <u>at 14:30 today</u>

1. Strong coupling constant from Z boson  $p_T$  distribution<br/> $\sqrt{s} = 8$  TeV, LHC Run 1!arXiv:2309.12986

#### 2. Z boson invisible width

 $\sqrt{s}$  = 13 TeV, partial LHC Run 2 dataset

PLB 854 (2024) 138705

# 3. Mass and width of W boson $\sqrt{s} = 7$ TeV, LHC Run 1!



### Introduction



#### Parameters of Standard Model

interconnected with each other, e.g.:

$$m_{\rm W} = \left(\frac{\pi\alpha_{\rm EM}}{\sqrt{2}G_{\rm F}}\right)^{1/2} \frac{\sqrt{1+\Delta r}}{\sin\theta_{\rm W}}$$

radiative corrections  $\Delta r$  with largest contributions from  $m_t^2$ , log( $m_H$ )

#### Precision measurements

→ test self-consistency of SM theory in global EW fits

- $\rightarrow$  tensions could be signs of BSM effects
- → probe BSM beyond reach of searches

#### Strong coupling constant



Jakub Kremer, SM precision measurements, 18.07.2024

**Coupling constant**  $\alpha_s \rightarrow$  only free QCD parameter if quark masses neglected

**Running**:  $\alpha_s$  decreases with interaction scale  $\rightarrow \alpha_s(m_7)$  as conventional reference

**Z boson p<sub>T</sub> distribution** in peak region directly sensitive to  $\alpha_s(m_Z)$   $\Box$  driven by emissions of soft ISR gluons



#### Strong coupling constant



**Coupling constant**  $\alpha_s \rightarrow$  only free QCD parameter if quark masses neglected

**Running**:  $\alpha_s$  decreases with interaction scale  $\rightarrow \alpha_s(m_z)$  as conventional reference

**Z boson p<sub>T</sub> distribution** in peak region directly sensitive to  $\alpha_s(m_z)$  $\Box$  driven by emissions of soft ISR gluons  $\Box$  small non-perturbative QCD effects

Use very precise 8 TeV measurement of p<sub>T</sub>-y cross-sections in full lepton phase-space: <u>EPJ C 84 (2024) 315</u>

#### <u>EPJ C 84 (2024) 315</u>

#### Z boson cross-sections

#### **Comparison with DYTurbo predictions**

**Breakdown of uncertainties** 



### Strong coupling constant



Push theory predictions to **N<sup>3</sup>LO+N<sup>4</sup>LLa** in QCD sexcellent convergence of perturbative series

#### Most precise experimental result

Uncertainty dominated by PDFs and experiment

Jakub Kremer, SM precision measurements, 18.07.2024

#### for more details see talk by K. Schmieden <u>at 14:30 today</u>



### Z boson invisible width

Width of **Z boson** for **decays into invisible states**  $\Gamma(Z \rightarrow inv)$  sensitive to  $\Box$  number of light neutrinos (m<sub>v</sub> < m<sub>z</sub>/2)  $\Box$  potential BSM contributions from new particles **1. correct Z \rightarrow inv and Z \rightarrow ll** 



### Z boson invisible width

Convert fitted constant to **Z boson invisible width** by combining with  $Z \rightarrow \ell\ell$  width measurement from LEP  $\Gamma(Z \rightarrow inv) = \hat{R}^{miss} \cdot \Gamma(Z \rightarrow \ell\ell)$ 

Most precise recoil-based result

Precision limited by lepton systematic uncertainties in Z→ℓℓ events



First ATLAS measurement of m<sub>w</sub> published in 2018 using 7 TeV data: **m<sub>w</sub> = 80370 ± 19 MeV** smost precise result at the time

Since then new measurements

- CDF: m<sub>w</sub> = 80433 ± 9 MeV
- LHCb: m<sub>w</sub> = 80354 ± 32 MeV

and advances in theoretical modelling





First ATLAS measurement of m<sub>w</sub> published in 2018 using 7 TeV data: **m<sub>w</sub> = 80370 ± 19 MeV** 4 most precise result at the time

Since then new measurements

- CDF: m<sub>w</sub> = 80433 ± 9 MeV
- LHCb: m<sub>w</sub> = 80354 ± 32 MeV

and advances in theoretical modelling

Yes! From previous measurement cexcellent control over experimental corrections cegood understanding of theory

Jakub Kremer, SM precision measurements, 18.07.2024

#### G 30000 ATLAS Data calibration $Z \rightarrow e^+e^$ s = 7 TeV, 4.6 fb<sup>-1</sup> Background o 25000 st 20000 دوست 15000 10000 5000 epton Pred. Data / 98 100 m, [GeV] ۷° ATLAS 🔶 Data efficients DYNNLO (CT10nnlo) X+X→qq 0.8 0.6 Ŏ 0.4 ŏ ula 0.2 σ 60 80 100 p<u></u> [GeV]

Eur. Phys. J. C 78 (2018) 110

### W boson mass and width

**Lepton p\_:** Jacobian edge at  $m_{\rm w}/2$ 

## unchanged from previous analysis

**Transverse mass**: Jacobian edge at  $m_w$ , more sensitive to  $\Gamma_w$  in tails



- Use leptonic W boson decays:  $W^{\pm} \rightarrow \ell^{\pm} v$  ( $\ell = e, \mu$ )
- Template fits using kinematic observables sensitive to  $m_w$  and  $\Gamma_w$

Selections and measurement categories unchanged from previous analysis

update to QCD background estimation

- u, more modern PDF sets → **see next slide**
- small update to uncertainties for higher-order electroweak corrections **key change: statistical analysis**

#### Previous measurement: $\chi^2$ fit

 $\hfill \hfill \hfill$ 

uncertainties determined a posteriori from offset method uno handle on their correlations

#### New: profile likelihood fit

Generation constrain systematic uncertainties in situ Generations directly determine their correlations

→ challenge: m<sub>w</sub> now also correlated with some systematic variations → **extensive validation of method to avoid biases** 

- CT10nnlo used as baseline in previous measurement → **new baseline: CT18**
- Results for most PDF sets agree within ~10 MeV (lepton  $p_T$ ) or ~20 MeV ( $m_T$ )
- NNPDF sets yield significantly lower values than other sets

|            |         | р                 | $\frac{\ell}{T}$ fit | 0                | $m_{\rm T}$ fit |                   |                         |                  |  |
|------------|---------|-------------------|----------------------|------------------|-----------------|-------------------|-------------------------|------------------|--|
| PDF set    | $m_W$   | $\sigma_{ m tot}$ | $\sigma_{\rm PDF}$   | $\chi^2$ /n.d.f. | $m_W$           | $\sigma_{ m tot}$ | $\sigma_{\mathrm{PDF}}$ | $\chi^2$ /n.d.f. |  |
| CT14       | 80358.3 | +16.1<br>-16.2    | 4.6                  | 543.3/558        | 80401.3         | +24.3<br>-24.5    | 11.6                    | 557.4/558        |  |
| CT18       | 80362.0 | +16.2<br>-16.2    | 4.9                  | 529.7/558        | 80394.9         | +24.3<br>-24.5    | 11.7                    | 549.2/558        |  |
| CT18A      | 80353.2 | +15.9<br>-15.8    | 4.8                  | 525.3/558        | 80384.8         | +23.5<br>-23.8    | 10.9                    | 548.4/558        |  |
| MMHT2014   | 80361.6 | +16.0<br>-16.0    | 4.5                  | 539.8/558        | 80399.1         | +23.2<br>-23.5    | 10.0                    | 561.5/558        |  |
| MSHT20     | 80359.0 | +13.8<br>-15.4    | 4.3                  | 550.2/558        | 80391.4         | +23.6<br>-24.1    | 10.0                    | 557.3/558        |  |
| ATLASpdf21 | 80362.1 | +16.9<br>-16.9    | 4.2                  | 526.9/558        | 80405.5         | +28.2<br>-27.7    | 13.2                    | 544.9/558        |  |
| NNPDF3.1   | 80347.5 | +15.2<br>-15.7    | 4.8                  | 523.1/558        | 80368.9         | +22.7<br>-22.9    | 9.7                     | 556.6/558        |  |
| NNPDF4.0   | 80343.7 | +15.0<br>-15.0    | 4.2                  | 539.2/558        | 80363.1         | +21.4<br>-22.1    | 7.7                     | 558.8/558        |  |

| Unc. [MeV]              | Total | Stat. | Syst. | PDF  | $A_i$ | Backg. | EW  | е   | $\mu$ | $u_{\mathrm{T}}$ | Lumi | $\Gamma_W$ | PS  |
|-------------------------|-------|-------|-------|------|-------|--------|-----|-----|-------|------------------|------|------------|-----|
| $p_{\mathrm{T}}^{\ell}$ | 16.2  | 11.1  | 11.8  | 4.9  | 3.5   | 1.7    | 5.6 | 5.9 | 5.4   | 0.9              | 1.1  | 0.1        | 1.5 |
| $m_{\mathrm{T}}$        | 24.4  | 11.4  | 21.6  | 11.7 | 4.7   | 4.1    | 4.9 | 6.7 | 6.0   | 11.4             | 2.5  | 0.2        | 7.0 |
| Combined                | 15.9  | 9.8   | 12.5  | 5.7  | 3.7   | 2.0    | 5.4 | 6.0 | 5.4   | 2.3              | 1.3  | 0.1        | 2.3 |

**New result** from combination of fits in lepton  $p_T$  and  $m_T$ :  $m_w$  = 80366.5 ± 15.9 MeV

**Total uncertainty reduced by ~15%** G precision driven by fits in lepton p<sub>T</sub> G improvements in most unc. categories G notably PDF and A<sub>i</sub>/PS uncertainties most constrained



### W boson width

| Unc. [MeV]              | Total | Stat. | Syst. | PDF | $A_i$ | Backg. | EW | e  | $\mu$ | $u_{\mathrm{T}}$ | Lumi | $m_W$ | PS |
|-------------------------|-------|-------|-------|-----|-------|--------|----|----|-------|------------------|------|-------|----|
| $p_{\mathrm{T}}^{\ell}$ | 72    | 27    | 66    | 21  | 14    | 10     | 5  | 13 | 12    | 12               | 10   | 6     | 55 |
| $m_{\mathrm{T}}$        | 48    | 36    | 32    | 5   | 7     | 10     | 3  | 13 | 9     | 18               | 9    | 6     | 12 |
| Combined                | 47    | 32    | 34    | 7   | 8     | 9      | 3  | 13 | 9     | 17               | 9    | 6     | 18 |

Same method used to measure W boson width: Γ<sub>w</sub> = 2202 ± 47 MeV

First direct determination at the LHC!

Most precise single-experiment result  $\Box$  more sensitive to  $m_T$  distribution than  $m_W$   $\Box$  uncertainty driven by recoil calibration and PS modelling





## **Additional slides**

#### Strong coupling constant



### Z invisible width



#### Z invisible width: systematic uncertainties





### Z invisible width: systematic uncertainties

| Systematic Uncertainty                        | Impact on $\Gamma(Z \rightarrow inv)$ | in [MeV] | in [%] |
|-----------------------------------------------|---------------------------------------|----------|--------|
| Muon efficiency                               |                                       | 7.4      | 1.5    |
| Renormalisation & factorisa                   | 5.9                                   | 1.2      |        |
| Electron efficiency                           |                                       | 4.9      | 1.0    |
| Detector correction                           |                                       | 4.4      | 0.9    |
| QCD multijet                                  |                                       | 3.2      | 0.6    |
| $E_{\mathrm{T}}^{\mathrm{miss}}$              |                                       | 2.4      | 0.5    |
| $Z(\rightarrow \mu\mu)$ +jets misid. leptor   | n estimate                            | 1.9      | 0.4    |
| Jet energy resolution                         |                                       | 1.6      | 0.3    |
| $W(\rightarrow \ell \nu)$ +jets normalisation | n                                     | 1.5      | 0.3    |
| Pile-up reweighting                           |                                       | 1.5      | 0.3    |
| Non-collision background es                   | stimate                               | 1.3      | 0.3    |
| Jet energy scale                              |                                       | 1.3      | 0.3    |
| $\gamma^*$ -correction                        |                                       | 1.0      | 0.2    |
| $Z(\rightarrow ee)$ +jets misid. lepton       | estimate                              | 1.0      | 0.2    |
| Luminosity                                    |                                       | 1.0      | 0.2    |
| Parton distribution functions                 | $s + \alpha_s$                        | 0.7      | 0.1    |
| $\Gamma(Z \to \ell \ell)$                     |                                       | 0.5      | 0.1    |
| Tau energy scale                              |                                       | 0.4      | 0.1    |
| Muon momentum scale                           |                                       | 0.3      | 0.1    |
| $W(\rightarrow \ell \nu)$ +jets misid. leptor | n estimate                            | 0.3      | 0.1    |
| (Forward) jet vertex tagging                  |                                       | 0.2      | < 0.1  |
| Top subtraction scheme                        |                                       | 0.2      | < 0.1  |
| Electron energy scale                         |                                       | 0.1      | < 0.1  |
| Systematic                                    |                                       | 12       | 2.4    |
| Statistical                                   |                                       | 2        | 0.4    |
| Total                                         |                                       | 13       | 2.5    |

### **Experimental corrections**

Benefit from excellent control of experimental corrections in previous ATLAS measurement  $\rightarrow$  selections unchanged, update to QCD background estimation



### **Theoretical modelling**

Modelling largely unchanged from previous analysis → more modern PDF sets, small update to uncertainties for higher-order electroweak corrections





Also: parton distribution functions, higher-order electroweak corrections, ... 24

## m<sub>w</sub>: Comparison of statistical methods

Compare fit results between  $\chi^2$ +offset method and PLH fit

Use CT10nnlo PDF set (baseline in previous measurement)

Total uncertainties reduced with PLH fit

Combined lepton p<sub>T</sub> fit: central value shifted by 16 MeV





m<sub>w</sub> [MeV]

 $m_W$  [MeV]

## m<sub>w</sub>: PLH fit checks

- Fit toys with random variations of nuisance parameters
- Central values for lepton  $p_T$  fit: 16 MeV spread  $\rightarrow \chi^2$  and PLH results agree at  $1\sigma$
- Distribution of nuisance parameter pulls consistent with normal distribution



#### **PDF set updates**

- Kinematic distributions extrapolated from CT10nnlo to more modern PDF sets using reweighting derived with POWHEG
- Impact on both shape and normalisation of distributions (esp. NNPDF sets!)



## m<sub>w</sub>: Scaling pre-fit PDF uncertainties

Cross-check: do enlarged PDF uncertainties improve agreement between different sets?

Yes: more freedom to adapt to data → reduced model dependence at cost of slightly increased total uncertainty

#### Baseline set for final results: CT18

- does not include ATLAS W/Z boson cross-sections at 7 TeV
- most conservative uncertainty (except ATLASpdf21)



## $\mathbf{m}_{\mathbf{w}}$ : Fit results with CT18 PDF set

- Cross-checks done with separate combinations of e/µ or W<sup>+</sup>/W<sup>-</sup> channels
- All consistent within 1σ
- No significant dependence on fitting ranges



|                              | <b>ATLAS</b><br>√s=7 TeV, 4.6/4. | lepton                  | p <sub>T</sub> fits                         |
|------------------------------|----------------------------------|-------------------------|---------------------------------------------|
|                              |                                  | $p_T^\ell$ , total unc. | m <sub>w</sub> unc.                         |
| μ,  η <0.8, q=–1             |                                  | ‴∭                      | 80434 +41 -41                               |
| μ,  η <0.8, q=+1             |                                  | <b>—</b> %              | 80302 +40 -39                               |
| <i>u</i> , 0.8< η <1.4, q=−1 |                                  | - Hereiter              | 80370 +43 -43                               |
| <i>u</i> , 0.8< η <1.4, q=+1 |                                  |                         | 80342 +40 -40                               |
| <i>u</i> , 1.4< η <2.0, q=−1 |                                  |                         | 80376 +49 -50                               |
| <i>u</i> , 1.4< η <2.0, q=+1 |                                  | - <u> </u>              | <b></b> 80478 <sup>+49</sup> <sub>-49</sub> |
| <i>u</i> , 2.0< η <2.4, q=−1 |                                  |                         | 80328 +129 -128                             |
| <i>u</i> , 2.0< η <2.4, q=+1 |                                  |                         | 80360 +120 -118                             |
| <i>e</i> ,  η <0.6, q=−1     |                                  |                         | 80342 +46 -45                               |
| <i>e</i> ,  η <0.6, q=+1     |                                  | -                       | 80291 +44 -43                               |
| e, 0.6< η <1.2, q=−1         |                                  |                         | 80310 +45 -45                               |
| e, 0.6< η <1.2, q=+1         |                                  |                         | 80379 +43 -42                               |
| e, 1.8< η <2.4, q=−1         |                                  |                         | 80378 +58 -59                               |
| e, 1.8< η <2.4, q=+1         |                                  |                         | 80351 <sup>+50</sup><br>-51                 |
| Combination                  |                                  |                         | 80362 <sup>+16</sup><br>-16                 |
|                              | 80200                            | 80400                   | 80600                                       |

 $m_W$  [MeV]

## $m_w$ : Lepton $p_T$ - $m_T$ combination

- Fits using lepton  $p_T$  and  $m_T$  not statistically independent  $\rightarrow$  combine with BLUE Correlation determined using toy variations of data and NPs
- Lepton  $p_{T}$  fits dominate combined results

| PDF set    | Correlation | weight $(p_{\rm T}^{\ell})$ | weight $(m_{\rm T})$ | Combined $m_W$ [MeV ] |
|------------|-------------|-----------------------------|----------------------|-----------------------|
| CT14       | 52.2%       | 88%                         | 12%                  | 80363.6 ± 15.9        |
| CT18       | 50.4%       | 86%                         | 14%                  | $80366.5 \pm 15.9$    |
| CT18A      | 53.4%       | 88%                         | 12%                  | $80357.2 \pm 15.6$    |
| MMHT2014   | 56.0%       | 88%                         | 12%                  | $80366.2 \pm 15.8$    |
| MSHT20     | 57.6%       | 97%                         | 3%                   | $80359.3 \pm 14.6$    |
| ATLASpdf21 | 42.8%       | 87%                         | 13%                  | $80367.6 \pm 16.6$    |
| NNPDF3.1   | 56.8%       | 89%                         | 11%                  | $80349.6 \pm 15.3$    |
| NNPDF4.0   | 59.5%       | 90%                         | 10%                  | $80345.6 \pm 14.9$    |

## Γ<sub>w</sub>: Results

- Measurement procedure largely the same as for m<sub>w</sub> fits
- Much less dependence on PDF set
- Combined results dominated by  $m_{\tau}$  fits

| PDF set    | Correlation | weight $(m_{\rm T})$ | weight $(p_{\rm T}^{\ell})$ | Combined $\Gamma_W$ [MeV ] |
|------------|-------------|----------------------|-----------------------------|----------------------------|
| CT14       | 50.3%       | 88%                  | 12%                         | $2204 \pm 47$              |
| CT18       | 51.5%       | 87%                  | 13%                         | $2202 \pm 47$              |
| CT18A      | 50.0%       | 86%                  | 14%                         | $2184 \pm 47$              |
| MMHT2014   | 50.8%       | 88%                  | 13%                         | $2182 \pm 47$              |
| MSHT20     | 53.6%       | 89%                  | 11%                         | $2181 \pm 47$              |
| ATLASpdf21 | 49.5%       | 84%                  | 16%                         | $2193 \pm 46$              |
| NNPDF31    | 49.9%       | 86%                  | 14%                         | $2182 \pm 46$              |
| NNPDF40    | 51.4%       | 85%                  | 15%                         | $2184 \pm 46$              |

 $m_w$ : Post-fit lepton  $p_T$  distributions





## m<sub>w</sub>: NP ranking







 $\Gamma_w$ : Post-fit  $m_T$  distributions





## $\Gamma_w$ : NP ranking







Ô

## $m_w/\Gamma_w$ : NP pull comparison







### m<sub>w</sub>: Comparison to global EW fit



## Simultaneous $m_w$ and $\Gamma_w$ fit

Previously shown fits of m<sub>w</sub> (Γ<sub>w</sub>) use as input the Γ<sub>w</sub> (m<sub>w</sub>) value from EW global fit

Determined linear dependence of the two observables:

- $\Delta m_w = -0.06 \Delta \Gamma_w$
- $\Delta \Gamma_{\rm W} = -1.25 \, \Delta m_{\rm W}$

Further test interdependence with simultaneous fit of both observables:

- m<sub>w</sub> = 80354.8 ± 16.1 MeV
- Γ<sub>w</sub> = 2198 ± 49 MeV
- -30% correlation

