Lepton flavour universality and violation using top quarks

ATLAS Experiment

Jacob Kempster on behalf of the ATLAS Collaboration 18/07/2024

(Potentially) anomalous leptonic / flavour physics results

Top Methodology

- Use the top quark it is the most massive particle and the closest to the scale of new physics it's vulnerable!
- Very short lifetime (does not hadronise) opportunity to study a 'bare' quark
- Very selective about decay channels $BR(t \rightarrow Wb) \sim 100\%$

UNIVERSITY OF SUSSEX

Analyses (Full Run 2 dataset)

- Lepton Flavour Universality in Top decays (2021): τ/μ
 - Nat. Phys. 17 (2021) 813-818

- Lepton Flavour Universality in Top decays (2024): μ/e
 - <u>arXiv:2403.02133</u> (Accepted by EPJC)

- Charged-lepton flavour violation: $\mu \tau q t$
 - <u>arXiv:2403.06742</u> (Accepted by PRD)

Lepton Flavour Universality with Tops τ/μ

Nat. Phys. 17 (2021) 813-818

Lepton Flavour Universality τ/μ

Fundamental axiom of the Standard Model that the couplings of W and Z-bosons to the charged leptons are independent of their mass.

$$R(\tau/\mu) = \frac{\mathcal{B}(t \to bW(\to \tau\nu))}{\mathcal{B}(t \to bW(\to \mu\nu))}$$

Di-leptonic $t\bar{t}$ decays

Using leptonic $\tau \rightarrow \mu$ decays = big challenge!

- Displaced τ decay vertex
- Low μ transverse momentum
- Kinematic overlap with prompt $W \rightarrow \mu$ decays
- Difficult to separate from hadronic decays to muons

Significant backgrounds to control:

- $Z \rightarrow \mu \mu$
- $b \rightarrow \mu$

W Leptonic Branching Ratios

Designing the signal regions

Double-differential binning to discriminate between $t \rightarrow W \rightarrow \mu$ and $t \rightarrow W \rightarrow \tau \rightarrow \mu$

- Muon impact parameter $\left| d_{0}^{\mu} \right|$
 - Measure of the displacement caused by the lifetime of the parent particle
- Muon transverse momentum p_T^μ
 - Lower in $\tau \rightarrow \mu$ events due to energy loss via neutrinos

Utilise prompt $W \rightarrow l$ for event identification ($l = e, \mu$)

Dealing with $Z \rightarrow \mu \mu$

Important background for <u>small</u> values of $\left| d_{0}^{\mu} \right|$

Build control region enriched in $Z \rightarrow \mu\mu$

- Same as signal region selection except:
 - No veto on $85 < m_{ll} < 95 \text{ GeV}$
 - No requirement on N_{(b-)jets}
- Fit $m_{\mu\mu}$ distribution to understand normalisation
- Apply normalisation in signal region

Dealing with $b(c) \rightarrow \mu$

Important background for <u>large</u> values of $\left| d_0^{\mu} \right|$

Build control region enriched in $b(c) \rightarrow \mu$

- Same as signal region selection except:
 - Same-charge leptons ($e\mu$ or $\mu\mu$)
- Higher p_T bins also used to control normalisation of $t\bar{t}V$ and $t\bar{t}$ with a charge-mis-ID lepton
- Apply normalisations back to signal region

UNIVERSITY OF SUSSEX

Lepton Flavour Universality τ/μ

Nat. Phys. 17 (2021) 813-818

• Consistent with assumption of lepton flavour universality

Lepton Flavour Universality with Tops μ/e

arXiv:2403.02133 (Accepted by EPJC)

Lepton Flavour Universality μ/e

160

160

13

180 200

m_{uu} [GeV]

180 200

m_{ee} [GeV]

UNIVERSITY OF SUSSEX

Lepton Flavour Universality μ/e

"B-tag counting method"

Describe the number of events with X-btags (N_X^{ll}) as a function of the luminosity, cross section, lepton (ϵ_{ll}) and b-tagging (ϵ_b^{ll}) efficiencies, b-tagging correlations (C_b^{ll}) , branching ratio correlations $g_{ll}^{t\bar{t}}$ and background estimations.

$$N_{1,m}^{ll} = L\sigma_{t\bar{t}} \epsilon_{ll} g_{ll}^{t\bar{t}} 2\epsilon_{b}^{ll} (1 - C_{b}^{ll} \epsilon_{b}^{ll}) f_{1,m}^{ll,t\bar{t}} + \sum_{k=bkg} (s_{1}^{k} g_{ll}^{k} f_{1,m}^{ll,k} N_{1}^{ll,k})$$

$$N_{2,m}^{ll} = L\sigma_{t\bar{t}} \epsilon_{ll} g_{ll}^{t\bar{t}} C_{b}^{ll} (\epsilon_{b}^{ll})^{2} f_{2,m}^{ll,t\bar{t}} + \sum_{k=bkg} (s_{2}^{k} g_{ll}^{k} f_{2,m}^{ll,k} N_{2}^{ll,k})$$

$$R_W^{\mu/e} = \frac{\mathcal{B}(W \to \mu\nu)}{\mathcal{B}(W \to e\nu)} = \frac{\overline{W}(1 + \Delta_W)}{\overline{W}(1 - \Delta_W)}$$

$$g_{ee}^{t\bar{t}} = f_{0\tau}^{ee} (1 - \Delta_W)^2 + f_{1\tau}^{ee} (1 - \Delta_W) + f_{2\tau}^{ee}$$

$$g_{e\mu}^{t\bar{t}} = f_{0\tau}^{e\mu} (1 - \Delta_W) (1 + \Delta_W) + f_{1\tau}^{e\mu} + f_{2\tau}^{e\mu}$$

$$g_{\mu\mu}^{t\bar{t}} = f_{0\tau}^{\mu\mu} (1 + \Delta_W)^2 + f_{1\tau}^{\mu\mu} (1 + \Delta_W) + f_{2\tau}^{\mu\mu}$$

UNIVERSITY OF SUSSEX

Lepton Flavour Universality μ/e

"B-tag counting method"

Describe the number of events with X-btags (N_X^{ll}) as a function of the luminosity, cross section, lepton (ϵ_{ll}) and b-tagging (ϵ_b^{ll}) efficiencies, b-tagging correlations (C_b^{ll}) , branching ratio correlations $g_{ll}^{t\bar{t}}$ and background estimations.

$$N_{Z}^{ee} = L\sigma_{Z \to ll} \epsilon_{Z \to ee} g_{ee}^{Z+jets} + \sum_{k=bkg} (s_{Z}^{k} N_{Z}^{ee,k})$$
$$N_{Z}^{\mu\mu} = L\sigma_{Z \to ll} \epsilon_{Z \to \mu\mu} g_{\mu\mu}^{Z+jets} + \sum_{k=bkg} (s_{2}^{k} N_{Z}^{\mu\mu,k})$$

$$R_Z^{\mu\mu/ee} = \frac{\mathcal{B}(Z \to \mu\mu)}{\mathcal{B}(Z \to ee)} = \frac{\overline{Z}(1 + \Delta_Z)}{\overline{Z}(1 - \Delta_Z)}$$

$$g_{ee}^{Z+jets} = (1 - \Delta_Z)(1 - \Delta_{Z+b})$$
$$g_{e\mu}^{Z+jets} = 1$$
$$g_{\mu\mu}^{Z+jets} = (1 + \Delta_Z)(1 + \Delta_{Z+b})$$

Lepton Flavour Universality μ/e

Fitting 10 free parameters: $\sigma_{t\bar{t}}$, $\sigma_{Z \to ll}$, $R_{WZ}^{\mu/e}$, $R_Z^{\mu\mu/ee}$, $\epsilon_b^{ll'}$, Z+jets normalisation... Measuring b-tagging and lepton efficiencies, lepton mis-ID and charge mis-ID in place...

$$R_{WZ}^{\mu/e} = \frac{R_W^{\mu/e}}{\sqrt{R_Z^{\mu\mu/ee}}} = \frac{B(W \to \mu\nu)}{B(W \to e\nu)} \cdot \sqrt{\frac{B(Z \to ee)}{B(Z \to \mu\mu)}}$$

Tailored normalisation:

- Reduces sensitivity to uncertainties on electron and muon efficiencies through cancellations
- Exploits extremely precise external measurement of $R_Z^{\mu\mu/ee}$ from LEP and SLD:

$$R_{Z-\text{ext}}^{\mu\mu/ee} = 1.0009 \pm 0.0028$$

Lepton Flavour Universality μ/e

arXiv:2403.02133, ATLAS Briefing, CERN Courier

 $R_W^{\mu/e} = 0.9995 \pm 0.0022 \text{ (stat)} \pm 0.0036 \text{ (syst)} \pm 0.0014 \text{ (ext)}$

~0.45% total uncertainty

- Misidentified leptons
- PDFs
- $t\bar{t}$ and Z+jets modelling
- Lepton efficiencies
- Consistent with assumption of lepton flavour universality
- Smaller uncertainty than previous world average

Top Charged-Lepton Flavour-Violation $\mu \tau q t$

arXiv:2403.06742 (Accepted by PRD)

Effective Field Theory (EFT)

FP 10 (2010) 085

tīW

 $(t\bar{t}H)$

Maybe New Physics (NP) exists at a significantly higher energy scale $(\Lambda_{\rm NP})$ than LHC can reach...

K. Mimasu, EFTforTop

Model

Operators introducing new interactions

Coupling Strength

(tW)

 $(t\bar{t}Z, t\bar{t}\gamma)$

(tītbb

 $tZ, t\gamma$

single top

2Q2L EFT operators

Operator	Interaction	Lorentz Structure
$O_{\sf lq}^{1(ijkl)}$	$(\bar{l}_i\gamma^\mul_j)(\bar{q}_k\gamma_\muq_l)$	Vector
$O_{lq}^{3(ijkl)}$	$(\bar{l}_i\gamma^\mu\sigma^Il_j)(\bar{q}_k\gamma_\mu\sigma_Iq_l)$	Vector
$O_{\rm eq}^{(ijkl)}$	$(\bar{e}_i \gamma^{\mu} e_j) (\bar{q}_k \gamma_{\mu} q_l)$	Vector
$O_{ m lu}^{(ijkl)}$	$(\bar{I}_i\gamma^\muI_j)(\bar{u}_k\gamma_\muu_l)$	Vector
${\cal O}_{\rm eu}^{(ijkl)}$	$(\bar{e}_i \gamma^{\mu} e_j) (\bar{u}_k \gamma_{\mu} u_l)$	Vector
$O_{lequ}^{1(ijkl)}$	$(\bar{l}_i e_j) \varepsilon(\bar{q}_k u_l)$	Scalar
$O_{lequ}^{3(ijkl)}$	$(\bar{I}_i \sigma^{\mu \nu} e_j) \varepsilon (\bar{q}_k \sigma_{\mu \nu} u_l)$	Tensor

Production $qg \rightarrow tll'$

Recent history

Limits on CLFV branching ratio of top (95% CL):

 $B(t \to ll'q) < 1.86 \times 10^{-5}$ $B(t \to e\mu q) < 6.6 \times 10^{-6}$

ATLAS-CONF-2018-044

(3-lepton final state, 80 fb⁻¹)

$$B(t \to e \mu q) < 0.009 - 0.258 \times 10^{-6}$$

 $\frac{\text{CMS-PAS-TOP-22-005}}{\text{(3-lepton final state, 138 fb}^{-1})}$

This analysis is first direct search for CLFV $\mu\tau qt$ coupling.

BSM models predicting CLFV with electrons/muons also apply to taus, often additionally enhanced due to larger mass

Signal region

Binned in H_T (sum of visible object transverse momenta) to capture energy growth behaviour of EFT operators

Signal shown is inclusive EFT (up-initiated, charminitiated, all operators)

For up-quark operators, the production mode (blue) dominates the cross-section and sensitivity

For charm-quark operators, the production and decay modes are more balanced

Fake and non-prompt estimations

- Fake hadronic taus are usually due to mis-identified jets
- Dedicated CRs (right, do not enter the fit)
- Scale factors (SF) are used to correct the rate of the fake-tau background

SFs are parameterised by:

- Track multiplicity (1-prong / 3-prong)
- Tau-jet width
 - This is a good proxy for the quark-gluon fractions which may differ slightly between SR/CR and between data and MC

Dedicated CR (right, enters the fit)

Targeting non-prompt muons from b-jets in $t\bar{t}$ events

Normalisation is controlled by a profilelikelihood fit (next slides)

OF SUSSEX

Profile-likelihood fit

arXiv:2403.06742

24

Good agreement between data and backgroundonly model

Statistically limited result

Largest systematics are signal, $t\bar{t}W$ and diboson modelling

'Inclusive' BR limits set assuming all EFT operators are of

equal magnitude

	95% CL upper limits on $ c /\Lambda^2$ [TeV ⁻²]					
	$c_{lq}^{-(ijk3)}$	$c_{\rm eq}^{(ijk3)}$	$c_{ m lu}^{(ijk3)}$	$c_{\rm eu}^{(ijk3)}$	$c_{lequ}^{1(ijk3)}$	$c_{lequ}^{3(ijk3)}$
Previous (u)	12	12	12	12	18	2.4
Expected (u)	0.33	0.31	0.3	0.32	0.33	0.08
Observed (u)	0.43	0.41	0.4	0.42	0.44	0.10
Previous (c)	14	14	14	14	21	2.6
Expected (c)	1.3	1.2	1.2	1.2	1.4	0.28
Observed (c)	1.6	1.6	1.6	1.6	1.8	0.36

EFT limits improve upon previous results (<u>re-interpretation of ATLAS FCNC *tZq* analysis</u>):

- From factors of 7.2 for $c_{lequ}^{3(2323)}$ (for $\mu\tau ct$) to 41 for $c_{lequ}^{1(2313)}$ (for $\mu\tau ut$).

	95% CL upper limits on $\mathcal{B}(t \to \mu \tau q)$			
	Stat. uncertainty	Stat.+syst. uncertainties		
Expected	4.6×10^{-7}	5.0×10^{-7}		
Observed	8.2×10^{-7}	8.7×10^{-7}		

Summary

• (Some) Lepton and Flavour physics anomalies persist

• Top quarks are a fantastic tool to search for new physics

• Effective Field Theory is valuable for model-independent BSM searches

• ATLAS is actively engaged in research for LFU and CLFV

Backup

D0 - Tevatron

Counting experiment - how many same-sign muon pairs?

$$A = \frac{(N^{++} - N^{--})}{(N^{++} + N^{--})}$$

(2010-2013) Observed asymmetries up to 3.9 σ from SM expectation

- PRD 105 (2010) 081801
- PRD 84 (2011) 052007
- PRD 87 (2013) 074020

$$a_{\rm sl}^q \ = \frac{\Gamma\left(\bar{B_q^0} \to B_q^0 \to f\right) - \Gamma\left(B_q^0 \to \bar{B_q^0} \to \bar{f}\right)}{\Gamma\left(\bar{B_q^0} \to B_q^0 \to f\right) + \Gamma\left(B_q^0 \to \bar{B_q^0} \to \bar{f}\right)},$$

$$a_{\rm dir}^q = \frac{\Gamma(b \to \mu^- X) - \Gamma(\bar{b} \to \mu^+ X)}{\Gamma(b \to \mu^- X) + \Gamma(\bar{b} \to \mu^+ X)},$$

Muon g-2 - Fermilab

$$a_{\mu} = (g_{\mu} - 2)/2$$

 $g_{\mu} =$ Muon gyromagnetic factor

FIG. 1. Feynman diagrams of representative SM contributions to the muon anomaly. From left to right: first-order QED and weak processes, leading-order hadronic (H) vacuum polarization, and hadronic light-by-light contributions.

PRL 131 (2023) 161802

At one point this was up to 3.1σ away from the SM

Now found to be in good agreement PRD 108 (2023) 032002

(However, some angular discrepancies remain!)

 $B_s \to \mu^+ \mu^-$

 $R(D^{(*)})$

UNIVERSITY OF SUSSEX

LHCb-PAPER-2024-007 (in preparation)

LEP (CERN) Lepton Flavour Universality

W Leptonic Branching Ratios

115

UNIVERSITY OF SUSSEX

Lepton Flavour Universality μ/e

"B-tag counting method"

$$N_{1}^{e\mu} = L\sigma_{t\bar{t}} \epsilon_{e\mu} g_{e\mu}^{t\bar{t}} 2\epsilon_{b}^{e\mu} (1 - C_{b}^{e\mu} \epsilon_{b}^{e\mu}) + \sum_{\substack{k=bkg \ k=bkg}} s_{1}^{k} g_{e\mu}^{k} N_{1}^{e\mu,k}$$

$$N_{2}^{e\mu} = L\sigma_{t\bar{t}} \epsilon_{e\mu} g_{e\mu}^{t\bar{t}} C_{b}^{e\mu} (\epsilon_{b}^{e\mu})^{2} + \sum_{\substack{k=bkg \ k=bkg}} s_{2}^{k} g_{e\mu}^{k} N_{2}^{e\mu,k}$$

$$\begin{split} N_{1,m}^{\ell\ell} &= L\sigma_{t\bar{t}} \,\epsilon_{\ell\ell} \,g_{\ell\ell}^{t\bar{t}} \,2\epsilon_b^{\ell\ell} (1 - C_b^{\ell\ell} \epsilon_b^{\ell\ell}) \,f_{1,m}^{\ell\ell,t\bar{t}} + \sum_{\substack{k=\text{bkg}}} s_1^k g_{\ell\ell}^k \,f_{1,m}^{\ell\ell,k} N_1^{\ell\ell,k} \\ N_{2,m}^{\ell\ell} &= L\sigma_{t\bar{t}} \,\epsilon_{\ell\ell} \,g_{\ell\ell}^{t\bar{t}} \,C_b^{\ell\ell} (\epsilon_b^{\ell\ell})^2 \,f_{2,m}^{\ell\ell,t\bar{t}} + \sum_{\substack{k=\text{bkg}}} s_2^k g_{\ell\ell}^k \,f_{2,m}^{\ell\ell,k} N_2^{\ell\ell,k} \end{split}$$

Lepton Flavour Universality μ/e

"B-tag counting method"

$$R_W^{\mu/e} = \frac{\mathcal{B}(W \to \mu\nu)}{\mathcal{B}(W \to e\nu)} = \frac{\overline{W}(1 + \Delta_W)}{\overline{W}(1 - \Delta_W)}$$

$$\begin{array}{rcl} g_{ee}^{t\bar{t}} &=& f_{0\tau}^{ee}(1-\Delta_W)^2 & +f_{1\tau}^{ee}(1-\Delta_W) & +f_{2\tau}^{ee} \\ g_{e\mu}^{t\bar{t}} &=& f_{0\tau}^{e\mu}(1-\Delta_W)(1+\Delta_W) & +f_{1\tau}^{e\mu} & +f_{2\tau}^{e\mu} \\ g_{\mu\mu}^{t\bar{t}} &=& f_{0\tau}^{\mu\mu}(1+\Delta_W)^2 & +f_{1\tau}^{\mu\mu}(1+\Delta_W) & +f_{2\tau}^{\mu\mu} \end{array}$$

$$R_Z^{\mu\mu/ee} = \frac{\mathcal{B}(Z \to \mu\mu)}{\mathcal{B}(Z \to ee)} = \frac{\overline{Z}(1 + \Delta_Z)}{\overline{Z}(1 - \Delta_Z)}$$

$$g_{ee}^{Z+\text{jets}} = (1 - \Delta_Z)(1 - \Delta_{Z+b})$$

$$g_{e\mu}^{Z+\text{jets}} = 1$$

$$g_{\mu\mu}^{Z+\text{jets}} = (1 + \Delta_Z)(1 + \Delta_{Z+b})$$

LFU Comparison to CMS and others

TABLE V. Ratios of different leptonic branching fractions, $R_{\mu/e} = \mathcal{B}(W \to \mu \bar{\nu}_{\mu})/\mathcal{B}(W \to e \bar{\nu}_{e})$, $R_{\tau/e} = \mathcal{B}(W \to \tau \bar{\nu}_{\tau})/\mathcal{B}(W \to e \bar{\nu}_{e})$, and $R_{\tau/\mu} = \mathcal{B}(W \to \tau \bar{\nu}_{\tau})/\mathcal{B}(W \to \mu \bar{\nu}_{\mu})$, measured here compared with the values obtained by other LEP [8], LHC [13,16,17], and Tevatron [14,15] experiments.

	CMS	LEP	ATLAS	LHCb	CDF	D0
$R_{\mu/e}$	1.009 ± 0.009	0.993 ± 0.019	0.9995 ± 0.0045	0.980 ± 0.012	0.991 ± 0.012	0.886 ± 0.121
$R_{\tau/e}$	0.994 ± 0.021	1.063 ± 0.027				
$R_{ au/\mu}$	0.985 ± 0.020	1.070 ± 0.026	0.992 ± 0.013			
$R_{ au/\ell}$	1.002 ± 0.019	1.066 ± 0.025				

Phys. Rev. D 105 (2022) 072008

Top EFT and the B-anomalies

experimental input

Top 2Q2L operator effects

CLFV and Neutrino Oscillations / New Physics

New physics which introduces additional terms involving lepton fields in Lagrangian can lead to LFV, e.g. SUSY, leptoquarks, 2HDMs

Event selection with 139 fb^{-1}

- Top quark decay and production diagrams differ by 1-jet
- Trilepton event selection including hadronic taus

g

u, c

le

 $^{\mathrm{u,c}}$

• Same-sign muons produce significant background reduction

Charged Lepton Flavour Violation

Using <u>dim6top</u>, found to agree with <u>SMEFTsim 3.0</u>

	Cross-section $\sigma_{-\text{scale}}^{+\text{scale}} \pm \text{PDF}$ [fb]					
	$c_{\text{vector}}^{(ijk3)}$ $c_{\text{lequ}}^{1(ijk3)}$ $c_{\text{lequ}}^{3(ijk3)}$					
Production <i>ll'ut</i>	$118^{+24}_{-19} \pm 1$	$101^{+21}_{-16} \pm 1$	$2150^{+410}_{-320}\pm20$			
Production <i>ll[']ct</i>	$7.9^{+1.2}_{-1.0} \pm 1.6$	$6.1^{+1.0}_{-0.8}\pm1.5$	$153^{+21}_{-18}\pm29$			
Decay $\ell \ell' q_k t$	$6.9^{+1.8}_{-1.3} \pm 0.1$	$3.46^{+0.90}_{-0.66}\pm0.03$	$166^{+43}_{-32}\pm 2$			

$$\Gamma(t \to \ell_i^+ \ell_j^- q_k) = \frac{m_t}{6144\pi^3} \left(\frac{m_t}{\Lambda}\right)^4 \left\{ 4|c_{lq}^{-(ijk3)}|^2 + 4|c_{eq}^{(ijk3)}|^2 + 4|c_{lu}^{(ijk3)}|^2 + 4|c_{eq}^{(ijk3)}|^2 + 4|c_$$

JHEP04 (2019) 014

Yields

Process		SR		C	Rtīµ	l
$t\bar{t} + NP \mu$	7.9	±	3.4	164	±	14
$t\bar{t}W$	3.5	±	1.8	1.2	±	0.6
$t\bar{t}H$	3.1	±	0.4	1.26	±	0.14
$t\bar{t}Z$	2.9	±	0.5	0.88	±	0.33
t+X	2.48	±	0.18		_	
WZ	3.6	±	1.3	7.3	±	2.4
ZZ	0.59	±	0.22	1.8	±	0.6
VVV	0.01	±	0.05	0.47	±	0.24
Fake electron		_		7	±	4
Fake $ au$	3.3	±	0.4		_	
Fake τ + NP μ	3.7	±	2.7		_	
t +X + NP μ	0.29	±	0.31	15	±	5
$Z + NP \mu$	0.192	±	0.010	1.8	±	1.0
Other NP μ	0.051	±	0.010		_	
Other	0.23	±	0.11	1.1	±	0.6
Signal $(t\bar{t})$	0.19	±	0.14	0.025	±	0.019
Signal (single-top)	6	±	4	0.022	±	0.023
Total	38	±	5	201	±	14
Data	37			202		

_42

CLFV EFT Result breakdown

EFT Result breakdown

CLFV EFT Result breakdown

UNIVERSITY OF SUSSEX

Scalar leptoquark with cross-generational couplings could produce CLFV processes.

$$\lambda_{ki} \in \begin{pmatrix} \lambda_{t\tau} & \lambda_{c\tau} & \lambda_{u\tau} \\ \lambda_{t\mu} & \lambda_{c\mu} & \lambda_{u\mu} \\ \lambda_{te} & \lambda_{ce} & \lambda_{ue} \end{pmatrix} \equiv \lambda^{LQ} \begin{pmatrix} 10 & 1 & 0.1 \\ 1 & 0.1 & 0.01 \\ 0.1 & 0.01 & 0.001 \end{pmatrix}$$

Cross-generational couplings introduce many degrees of freedom, which may be simplified with a hierarchical modal:

$$\lambda_{ki} \in \begin{pmatrix} \lambda_{t\tau} & \lambda_{c\tau} & \lambda_{u\tau} \\ \lambda_{t\mu} & \lambda_{c\mu} & \lambda_{u\mu} \\ \lambda_{te} & \lambda_{ce} & \lambda_{ue} \end{pmatrix} \equiv \lambda^{LQ} \begin{pmatrix} 10 & 1 & 0.1 \\ 1 & 0.1 & 0.01 \\ 0.1 & 0.01 & 0.001 \end{pmatrix}$$

This reduces 10 degrees of freedom (9 coupling, 1 mass) into 2 (1 coupling, 1 mass).

Various theory papers apply hierarchical coupling models, with different magnitudes spanning steps of $\sqrt{2}$ to $\frac{1}{16}$ [1,2,3,4,5]

Analysis is not re-optimised for LQ signal, but HT is already a very good discriminating variable. Signals $0.5 < m_{LQ} < 2.5$ TeV, and $0.5 < \lambda^{LQ} < 3.5$ are fit independently:

15

UNIVERSITY OF SUSSEX

<i>m</i> _{<i>S</i>₁} [GeV]	Limit on λ^{LQ} (95% CL) Observed Expected		
500	1.3	1.1	
750	1.7	1.5	
1000	2.1	1.8	
1250	2.5	2.2	
1500	2.9	2.5	
1750	3.3	2.9	
2000	3.7	3.2	

15

UNIVERSITY OF SUSSEX