

tt+X measurements using the full Run 2 dataset with the ATLAS experiment

18.07.2024

Jan Hahn on behalf of the ATLAS Collaboration

Motivation for top+X processes

- Processes probe the electroweak coupling of top quarks
 - This talk focuses on top production with W, Z and γ
 - Couplings may be sensitive to new physics → EFT interpretations
- Important backgrounds for BSM searches and SM measurements
 - Often contributions to irreducible background
- Differential measurements also of interest for MC modelling
- Focus on leptonic final states
- Rare processes → Profit from full Run 2 dataset

Complex higher-order
 QCD and EWK corrections

- Target 2 same-sign leptons (2LSS) or 3 leptons (3L)
 - Profile-likelihood fit to 48 (2L SS) and 8 (3L) signal regions (SR) and 10 control regions (CR) based on number of jets, b-jets and lepton flavour

JHEP 05 (2024) 131

- $\sigma_{t\bar{t}W}$ =880 ± 50(stat.) ± 70(syst.) fb (9.1%)
 - 1.4σ larger than NNLO calculation PRL 131 (2023) 231901
- Charge asymmetry: σ(ttW⁺)/σ(ttW⁻)= 1.96 ± 0.22

In agreement with SM

Universität Siegen

- Measure six variables using profile-likelihood unfolding, absolute and normalised cross-section
 - Split in regions based on lepton multiplicity and charge
 - Tikhonov regularisation of generator level norm factors
 - Shown H_T, scalar sum of selected jet transverse momenta
 - No significant disagreement between data and prediction
 - Dominated by statistical uncertainty

arXiv:2312.04450, accepted by JHEP

- Selection of events with 2L, 3L and 4L
- Events divided in categories based on number of jets, b-jets, lepton flavour and charge
- Neural net (NN) used to separate signal and background in each region
 - Binary in 2L and 4L regions
 - Multiclass in 3L region

ttZ: Inclusive cross-section

- Using 2L, 3L and 4L channels and performing simultaneous profile-likelihood fit to 8 SR and 4 CR
- $\sigma_{t\bar{t}z} = 0.86 \pm 0.04$ (stat.) ± 0.04 (syst.) pb
 - Precision of 6.5%, 35% improvement to previous measurement EPJC 81 (2021) 737
 - Systematic component reduced by 50%
 - Leading uncertainties:
 - Background normalisations, jets and missing transverse energy
- Measurement in agreement with NLO+NNLL+EW

 $\sigma_{t\bar{t}Z} = 0.86^{+0.07}_{-0.08} (scale) \pm 0.03 (PDF + \alpha_s) pb$ EPJC 79 (2019) 249

ttZ: Differential cross-sections

- 3L and 4L channels unfolded using profile-likelihood
- 17 observables unfolded, sensitive to EFT operators and MC modelling
- Tikhonov regularisation in variables including reconstructed top quarks
- Measurement of absolute and normalised distributions on particle and parton level
- No shape difference between measurement and predictions
- Measurements statistically limited (30%)
- Likelihoods available in the HEPdata record

7

Spin correlation and SMEFT interpretation

tt7:

- Spin correlations
 - $O = f_{SM}O_{spin-on} + (1 f_{SM})O_{spin-off}$
 - $f_{SM}=1.20 \pm 0.63$ (stat.) ± 0.25 (syst.)=1.20 ± 0.68
 - Disfavour no-spin hypothesis by 1.8 σ
- 20 SMEFT operators in Warsaw basis taken into account
 - Relevant operators are of dimension-6 $\mathcal{L}_{SMEFT} = \mathcal{L}_{SM} + \sum_{i} \frac{C_i}{\Lambda^2} \mathcal{O}_i^{(6)}$
 - Cut-off scale Λ , Wilson coefficient C_i
 - Modelled with SMEFTsim 3.0
 - Fits performed with linear and quadratic parametrisation ^x₃
 - Fit in rotated base based on Fisher information matrix

- Measuring try production for the first time
 - Production: Photon emitted from ISR or off-shell top quark
 - Photons from decay products treated as background
 - Sensitive to ty coupling
- Measuring total cross-section (production+decay)

- Measurement in single-lepton and dilepton channels
- NNs to separate signal and background
 - Multiclass in single-lepton, binary in dilepton channel
- Events with misidentified photons (electrons or hadrons) estimated with data-driven methods
 - $e \rightarrow \gamma$ by electrons normalised by comparison of data and MC Z $\rightarrow e^+e^-$
 - $h \rightarrow \gamma$ by hadrons estimated using fake enriched control regions

- Measured for tty production and total tty (production+decay) in fiducial phase space
- $\sigma_{t\bar{t}y, production} = 322 \pm 5 \text{ (stat)} \pm 15 \text{ (syst) fb}$ (5.2%)
 - MC: 299 ± 31 fb (scale+PDF) (MadGraph5_aMC@NLO)
 - Observed cross-section in agreement with prediction
 - Sensitivity systematically limited by tty modelling, normalisation of tty decay, jet and b-tagging uncertainty

- Normalised and absolute cross-section at particle level
 - Measured production and production+decay in both channels
 - Observables: $p_T(y)$, $\eta(y)$, angular variables among photons and jets or leptons
 - Expected to be sensitive to top-photon coupling

- Operators sensitive to ty coupling are sensitive to tZ coupling as well \rightarrow Combination with $t\bar{t}Z$
- Simultaneous unfolding of transverse momentum of Z and y as input
 - Same UFO model as tīZ
- Results available in $C_{tB} C_{tW}$ and $C_{tZ} C_{ty}$ basis

tqy

PRL 131 (2023) 181901

- Signal region with one photon, one lepton and exactly one b
 - Photon emitted from top quark before decay
 - Cut on m(eγ) to suppress Z background
 - Regions differ by number (0 or 1) of forward jets (2.5< η <4.5)
 - NN trained to separate signal and background
- Main backgrounds
 - tty: MC normalised to data in control region
 - Fakes like in $t\bar{t}y$
- Process observed at 9.3σ
 - $\sigma_{tq\gamma} \times B(t \to l\nu b) = 688 \pm 23(stat.)^{+75}_{-71}(syst.) fb$
 - Compatible with MC prediction $\sigma^{\rm NLO} = 515^{+36}_{-42} {\rm fb}$
 - CMS: evidence with 35fb⁻¹ PRL 121 (2018) 221802

• Precision measurements of top + boson for inclusive cross-section

Summary

- ttZ: 35% improvement with same dataset
- tt
 W: Better agreement of theory and experimental results
- tty: Separate measurement of production for the first time
- tqy: Observation at 9.3σ
- Differential measurements statistically limited
- Limits on EFT coefficients
 from ttZ and tty

ATL-PHYS-PUB-2024-005

ttW JHEP 05 (2024) 131

Variable	Definition
$N_{\rm jets}$	Number of selected jets with $p_{\rm T}>25{\rm GeV}$ and $ \eta <2.5$
$H_{\mathrm{T}}^{\mathrm{jet}}$	Scalar sum of the transverse momenta of selected jets with $p_{\rm T}>\!25{\rm GeV}$ and $ \eta <\!2.5$
$H_{\mathrm{T}}^{\mathrm{lep}}$	Scalar sum of the transverse momenta of selected leptons
$\Delta R_{\ell b, \text{lead}}$	Angular separation between the leading lepton and the leading b -tagged jet
$ \Delta \phi_{\ell\ell,\rm SS} $	Absolute azimuthal separation between the two leptons of the same-sign pair
$ \Delta \eta_{\ell\ell,\rm SS} $	Absolute pseudorapidity separation between the two leptons of the same-sign pair

	$\frac{\Delta\sigma(t\bar{t}W)}{\sigma(t\bar{t}W)}$ [%]	$\frac{\Delta \sigma_{\mathbf{fid}}(t\bar{t}W)}{\sigma_{\mathbf{fid}}(t\bar{t}W)}$ [%]	$\frac{\Delta R(t\bar{t}W)}{R(t\bar{t}W)}$ [%]	$rac{\Delta A_{ m C}^{ m rel}}{A_{ m C}^{ m rel}}[\%]$
$t\bar{t}W$ ME modelling	6.0	7.0	0.9	1.3
Prompt-lepton bkg. norm.	3.1	3.1	1.6	2.1
Lepton isolation BDT	2.3	2.3	0.7	1.0
Fakes/ $VV/t\bar{t}Z$ norm. (free to vary)	2.3	2.5	1.7	2.4
Non-prompt-lepton bkg. modelling	2.0	2.0	2.4	3.2
Trigger	1.9	1.9	0.5	0.6
MC statistics	1.5	1.6	1.9	2.6
$t\bar{t}W$ PDF	1.5	1.5	2.1	2.8
Jet energy scale	1.3	1.4	1.2	1.7
Prompt-lepton bkg. modelling	1.3	1.3	1.2	1.7
Luminosity	0.9	0.9	0.1	< 0.10
Charge Mis-ID	0.7	0.7	0.4	0.6
Jet energy resolution	0.5	0.5	0.6	0.9
Flavour tagging	0.4	0.5	0.5	0.6
$t\bar{t}W$ PS modelling	0.4	0.4	0.29	0.4
$t\bar{t}W$ scale	0.24	< 0.10	0.29	0.29
Electron/photon reconstruction	0.21	0.22	0.11	0.13
Muon	0.15	0.17	< 0.10	0.2
$E_{\mathrm{T}}^{\mathrm{miss}}$	< 0.10	< 0.10	0.15	0.21
Pile-up	< 0.10	0.11	< 0.10	< 0.10
Total systematic uncertainty	8	9	5	7
Statistical uncertainty	5	5	10	14
Total	9	11	11	15

PRL 131 (2023) 181901

Universität

Siegen

ttZ measurement

arXiv:2312.04450

- Previous measurement:
 - σ =0.99 ± 0.05(stat.) ± 0.08(syst.) pb

Channel	$\sigma_{t\bar{t}Z}$
Dilepton	$0.84 \pm 0.11 \text{ pb} = 0.84 \pm 0.06 \text{ (stat.)} \pm 0.09 \text{ (syst.) pb}$
Trilepton	$0.84 \pm 0.07 \text{ pb} = 0.84 \pm 0.05 \text{ (stat.)} \pm 0.05 \text{ (syst.) pb}$
Tetralepton	$0.97^{+0.13}_{-0.12}$ pb = 0.97 ± 0.11 (stat.) ± 0.05 (syst.) pb
Combination $(2\ell, 3\ell \& 4\ell)$	$0.86 \pm 0.05 \text{ pb} = 0.86 \pm 0.04 \text{ (stat.)} \pm 0.04 \text{ (syst.) pb}$

$$\sigma_{\rm t\bar{t}Z} = 0.86^{+0.07}_{-0.08} ({\rm scale}) \pm 0.03 ({\rm PDF} + \alpha_{\rm s})$$
 EPJC 79 249 (2019)

Uncertainty Category	$\Delta \sigma_{t \bar{t} Z} / \sigma_{t \bar{t} Z} [\%]$		
Background normalisations	2.0		
Jets and $E_{\rm T}^{\rm miss}$	1.9		
<i>b</i> -tagging	1.7		
$t\bar{t}Z \ \mu_{\rm f}$ and $\mu_{\rm r}$ scales	1.6		
Leptons	1.6		
Z+jets modelling	1.5		
tWZ modelling	1.1		
$t\bar{t}Z$ showering	1.0		
$t\bar{t}Z$ A14 tune	1.0		
Luminosity	1.0		
Diboson modelling	0.8		
tZq modelling	0.7		
PDF (signal & backgrounds)	0.6		
MC statistical	0.5		
Other backgrounds	0.5		
Fake leptons	0.4		
Pile-up	0.3		
Data-driven $t\bar{t}$	0.1		

	$\Delta \sigma_{t\bar{t}\gamma \text{ production}} / \sigma_{t\bar{t}\gamma \text{ production}} (\%)$		
Source	Single lepton	Dilepton	Combination
Statistical uncertainty	1.8	3.3	1.5
MC statistical uncertainties	1.5	1.5	1.0
Modelling uncertainties			
$t\bar{t}\gamma$ production PS uncertainty	2.4	3.7	0.9
Other $t\bar{t}\gamma$ production modelling	5.1	1.6	3.0
$t\bar{t}\gamma$ decay modelling	0.3	1.3	0.8
$t\bar{t}\gamma$ decay normalisation	2.4	3.1	2.1
Prompt photon background normalisation	1.5	2.0	2.0
Fake photon background estimate	0.8	1.5	1.6
Fake lepton background estimate	0.4	_	0.1
Other Background modelling	0.7	0.2	0.5
Experimental uncertainties			
Jet uncertainties	3.5	3.0	1.7
B-tagging uncertainties	2.6	2.1	1.0
Photon	0.5	1.5	0.8
Lepton	1.3	1.4	1.3
$E_{\mathrm{T}}^{\mathrm{miss}}$	0.3	0.4	0.4
Pile-up	0.3	0.7	0.5
Luminosity	0.8	1.0	0.8
Total systematic uncertainty	7.6	7.1	5.0
Total uncertainty	7.8	7.7	5.2
			19

SMEFT

- Standard Model Effective Field Theory (SMEFT) extends SM by new operators
- New operators are required to keep symmetries conserved and build from SM fields
- Relevant operators are of dimension-6 $\mathcal{L}_{SMEFT} = \mathcal{L}_{SM} + \sum_{i} \frac{C_i}{\Lambda^2} \mathcal{O}_i^{(6)}$
- Cut-off scale Λ , Wilson coefficient C_i
- Cross-section dependence parametrised as quadratic function of Wilson coefficients
- Both analysis ($t\bar{t}Z$ and $t\bar{t}y$) use SMEFTsim 3.0 UFO model with MadGraph at LO