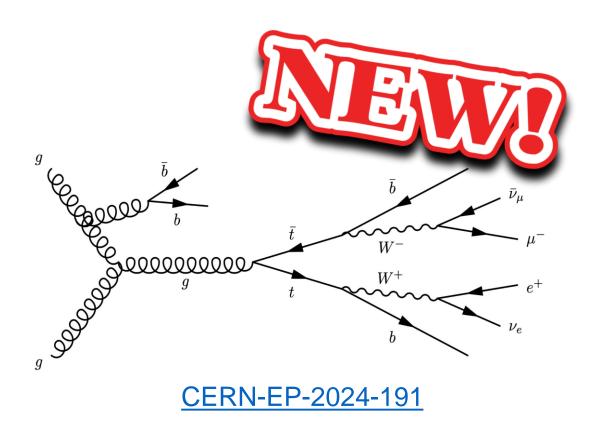
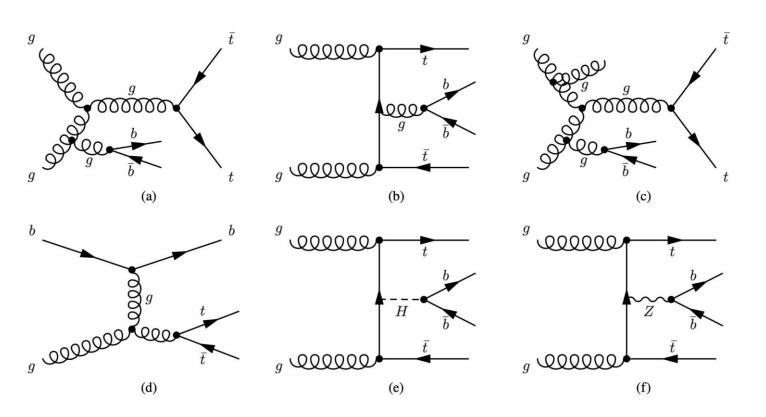
Run 2 tt + Heavy Flavour Jets in ATLAS

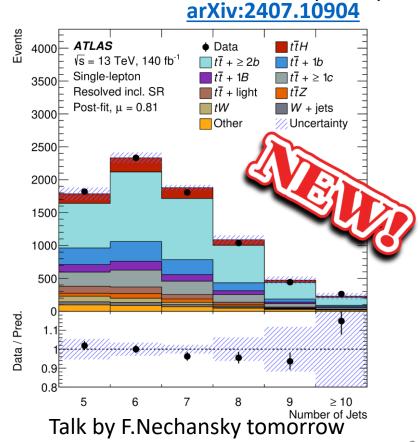
tt+heavy flavour measurements with the full run 2 dataset using the ATLAS experiment

ICHEP, 18 – 24 July 2024, Prague Ricardo Gonçalo (University of Coimbra / LIP)

on behalf of the ATLAS Collaborat

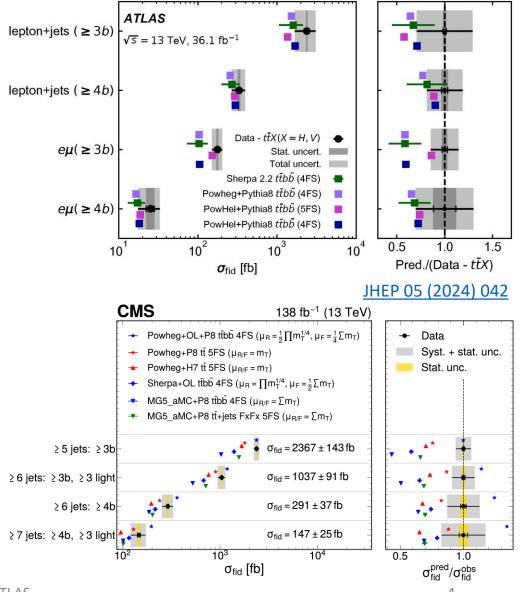



Outlook – top-quark pairs + b-jets


- Motivation
- Analysis description
- Observables and phase spaces
- Event selection and yields
- Backgound estimation
- Unfolding and Results

Motivation

- Challenging QCD calculation due to different scales: from m_t down to soft radiation
- Important and poorly constrained background to other measurements: ttH, tttt, ...



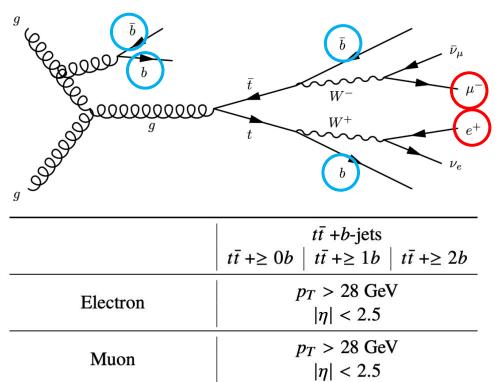
ICHEP'24 - tt+heavy flavour in ATLAS

JHEP 04 (2019) 046

Analysis Description

- Measure tt + >1 b jet fiducial cross sections at particle level in eµ top decays
 - Compare with state of the art generators
- In phase-space regions of different b-jet multiplicity
 - \geq 3b; \geq 4b; \geq 3b + \geq 1 light jets; \geq 4b+ \geq 1 light jets
 - Inclusive cross sections in each region
 - Normalised differential cross sections
- Backgrounds partially determined from data:
 - Fake leptons (small)
 - Mistagged tt+light jets and tt+charm
- Aim to improve upon previous measurements:
 - ATLAS 13 TeV, 36 fb⁻¹: JHEP 04 (2019) 046
 - CMS 13 TeV, 36 fb⁻¹: <u>JHEP 07 (2020) 125</u>
 - CMS 13 TeV, 138 fb⁻¹: JHEP 05 (2024) 042

Observables


- Phase space regions: ٠
 - \geq 2 b-jets inclusive
 - \geq 3(4) b-jets inclusive
 - \geq 3(4) b-jets + \geq 1 light jets
- Two categories of observables: •
 - p_{T} ordered b-jets •
 - b-jets from top decay vs QCD radiation
- Cross sections with respect to observables sensitive to complementary aspects: ٠
 - Matrix element and parton shower modelling
 - Additional QCD radiation
 - Kinematics of top quarks (b_1, b_2) and extra jets •
 - Top quark decays and possible new physics •
 - Modelling of additional b-jet activity •
 - Recoil modelling
 - In second category identify b-jets from top • decays or QCD radiation
- Observables at particle- and detector-level ٠

		Observable	Observable Description			Phase spaces			
				$\geq 2b$	$\geq 3b$	$\geq 3b$	$\geq 4b$	$\geq 4b$	
		σ^{fid}			,	$\geq 1l/c$		$\geq 1l/c$	
S		-	Fiducial total cross-section		\checkmark	\checkmark	\checkmark	\checkmark	
		N _{b-jets}	Number of <i>b</i> -jets	✓	√		,		
		N _{l/c-jets}	Number of light- or <i>c</i> -jets		<i>√</i>		<i>√</i>		
		$H_{\mathrm{T}}^{\mathrm{had}}$ $H_{\mathrm{T}}^{\mathrm{all}}$	Scalar sum of $p_{\rm T}$ of all jets		\checkmark		√		
			Scalar sum of $p_{\rm T}$ of charged leptons, jet and missing $E_{\rm T}$		\checkmark		\checkmark		
		$\Delta R_{\rm avg}^{bb}$	Average angular distance in ΔR of <i>b</i> -jet pairs		\checkmark		\checkmark		
Ū		$\Delta \eta_{ m max}^{jj}$	Maximum absolute difference in η between any pair of jets		\checkmark		\checkmark		
· —		$p_{\mathrm{T}}(b_1)$	$p_{\rm T}$ of the hardest <i>b</i> -jet		\checkmark		\checkmark		
Q		$p_{\mathrm{T}}(b_2)$	$p_{\rm T}$ of second-hardest <i>b</i> -jet		\checkmark		\checkmark		
		$p_{\mathrm{T}}(b_3)$	$p_{\rm T}$ of third-hardest <i>b</i> -jet		\checkmark		\checkmark		
a)		$p_{\mathrm{T}}(b_4)$	$p_{\rm T}$ of fourth-hardest <i>b</i> -jet				\checkmark		
Ľ		$\eta(b_1)$	η of hardest <i>b</i> -jet		\checkmark		\checkmark		
Ъ		$\eta(b_2)$	η of second-hardest <i>b</i> -jet		\checkmark		\checkmark		
9		$\eta(b_3)$	η of third-hardest <i>b</i> -jet		\checkmark		\checkmark		
ō		$\eta(b_4)$	η of fourth-hardest b-jet				\checkmark		
p _r -ordered b-jets		$p_{\rm T}(l/c\text{-jet}_1)$	$p_{\rm T}$ of the hardest light- or <i>c</i> -jet			\checkmark		\checkmark	
6		$\eta(l/c\text{-jet}_1)$	η of the hardest light- or c-jet			\checkmark		\checkmark	
_		$m(b_1b_2)$	Invariant mass of two hardest <i>b</i> -jets in $p_{\rm T}$		\checkmark		\checkmark		
		$\Delta R(b_1, b_2)$	ΔR between two hardest <i>b</i> -jets		\checkmark		\checkmark		
		$p_{\rm T}(b_1b_2)$	$p_{\rm T}$ of two hardest <i>b</i> -jets		\checkmark		\checkmark		
	- 1	$m(bb^{\min\Delta R})$	Invariant mass of two closest <i>b</i> -jets in ΔR				\checkmark		
		$p_{\mathrm{T}}(bb^{\min\Delta R})$	$p_{\rm T}$ of the closest <i>b</i> -jets pair				\checkmark		
		$\min \Delta R(bb)$	Closest angular distance in ΔR among <i>b</i> -jets				\checkmark		
		$m(e\mu b_1b_2)$	Invariant mass of electron, muon and two hardest b-jets		\checkmark		\checkmark		
extra b-jets		$p_{\rm T}(b_1^{\rm top})$	$p_{\rm T}$ of the hardest <i>b</i> -jet assigned to top quark		\checkmark		\checkmark		
Ū		$p_{\rm T}(b_2^{\rm top})$	$p_{\rm T}$ of the second-hardest b-jet assigned to top quark		\checkmark		\checkmark		
· —		$p_{\rm T}(b_1^{\rm add})$	$p_{\rm T}$ of the hardest additional <i>b</i> -jet		\checkmark		\checkmark		
<u> </u>		$p_{\rm T}(b_2^{\rm add})$	$p_{\rm T}$ of the second-hardest additional <i>b</i> -jet				\checkmark		
σ		$\eta(b_1^{t \circ p})$	η of the hardest b-jet assigned to top quark		\checkmark		\checkmark		
		$\eta(b_2^{\text{top}})$	η of the second-hardest <i>b</i> -jet assigned to top quark		\checkmark		\checkmark		
$\overline{\mathbf{X}}$		$\eta(b_1^{\hat{a}\hat{d}\hat{d}})$	η of the hardest additional <i>b</i> -jet		\checkmark		\checkmark		
Ð		$\eta(b_2^{add})$	η of the second-hardest additional <i>b</i> -jet				\checkmark		
		$m(bb^{top})$	Invariant mass of a pair of b -jets assigned to top quarks		\checkmark		1		
<pre>S</pre>		$p_{\rm T}(bb^{\rm top})$	$p_{\rm T}$ of a pair of b-jets assigned to top quarks		1		1		
top-decay		$m(bb^{add})$	Invariant mass of a pair of additional <i>b</i> -jets				1		
		$p_{\rm T}(bb^{\rm add})$	$p_{\rm T}$ of a pair of additional <i>b</i> -jets				1		
		$m(eubb^{top})$	Invariant mass of $e\mu$ and the <i>b</i> -jets pair assigned to top quarks		\checkmark				
Ð		$\Delta R(e\mu bb^{\mathrm{top}}, b_1^{\mathrm{add}})$	ΔR between the direction of the system of $e\mu$		√		√		
-		=	and <i>b</i> -jet pair assigned to top and the direction of the hardest additional <i>b</i> -jet		•		·		
<u>ò</u>		$\Delta R(e\mu bb^{top}, l/c\text{-jet}_1)$	ΔR between the direction of the system of $e\mu$						
0		(1 1 1 1 1 1 1 1	and <i>b</i> -jet pair assigned to top and the direction of the hardest light- or c -jet			\checkmark		\checkmark	
		$p_{\mathrm{T}}(l/c\text{-jet}_1) - p_{\mathrm{T}}(b_1^{\mathrm{add}})$	Difference in $p_{\rm T}$ between the hardest l/c -jet and the additional b -jet			\checkmark		\checkmark	

Event Selection

At **detector level**:

- Single-lepton triggers:
 - p_T > 24 (26) GeV for 2015 (2016-2018)
- Exactly one electron and one muon:
 - Opposite sign, isolated leptons
 - $m_{e\mu}$ > 15 GeV to reject low-mass di- τ
- At least 2 jets:
 - Anti-kt (R=0.4) on Particle flow constituents
- At least 2 b-tagged jets:
 - DL1r b-tagging algorithm (deep NN)
 - Baseline working point with 77% efficiency
 - Mis-tagging: 140 ± 12-19% (light); 5 ± 18-31% (c-jets)
- Similar particle-level selection criteria to define fiducial phase space

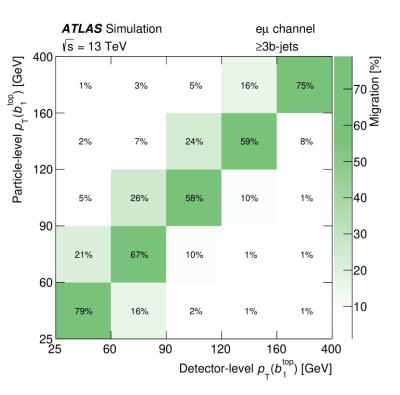
Muon	$p_T > 28 \text{ GeV}$ $ \eta < 2.5$					
jets/b-jets	$ p_T > 25 \text{ GeV} \\ \eta < 2.5$					
Number of electron (N_e)	1					
Number of muon (N_{μ})	1					
Number of <i>b</i> -jets (N_b)	$\geq 2 \qquad \geq 3 \qquad \geq 4$					
charge $Q_e + Q_\mu$	0					
ΔR (lepton, jet)	> 0.4					
e/μ from τ lepton decay	included					

Data & Monte Carlo Expected Yields

- Selected sample quite rich in top pair production
 - Non-top backgrounds determined and subtracted
- Backgrounds with true prompt leptons: ttH, ttV, single top, Z+jets, dibosons, etc
 - Estimated from Monte Carlo
- Background from Non-prompt and fake leptons
 - Estimated from Same Sign lepton sample, scaled using Monte Carlo derived factor
- Dominant background from mis-tagged tt+light jets / tt+charm
 - Normalized from **template fit to data**

Process	$\geq 2j, 2b@77\%$	$\geq 3j, 3b@77\%$	$\geq 4j, \geq 4b@77\%$
$t\bar{t}$ +b-jets	4100 ± 790	3550 ± 650	474 ± 99
tīc	11600 ± 2200	2190 ± 430	57 ± 15
tīl	263000 ± 33000	2080 ± 440	25 ± 15
Wt	9100 ± 1800	227 ± 94	14 ± 11
$t\bar{t}V$	740 ± 230	94 ± 30	16.3 ± 5.1
tĪH	180 ± 22	108 ± 13	37.2 ± 5.3
Non-prompt lepton	340 ± 210	37 ± 20	10.9 ± 6.1
Z/γ^* +jets	96 ± 38	3.4 ± 1.4	0.15 ± 0.09
Diboson	85 ± 43	3.0 ± 1.5	0.11 ± 0.07
Others	41 ± 20	16.4 ± 8.2	6.4 ± 2.9
Total predicted	290000 ± 35000	8300 ± 1300	640 ± 120
Observed	281213	10235	798

Predicted event yields before corrections


Unfolding

- Detector-level distributions unfolded to particle-level with iterative Bayesian method
- Non-tt backgrounds subtracted from data distribution at detector level – leaves ttb(b), ttc, ttl
- For an observable **X** in particle-level bin **i**:

$$N_{\text{unfold}}^{i} = \frac{1}{f_{\text{eff}}^{i}} \sum_{k} \mathcal{M}_{ik}^{-1} f_{\text{accept}}^{k} f_{t\bar{t}b}^{k} \left(N_{\text{data}}^{k} - N_{\text{bkg}}^{k}\right)$$

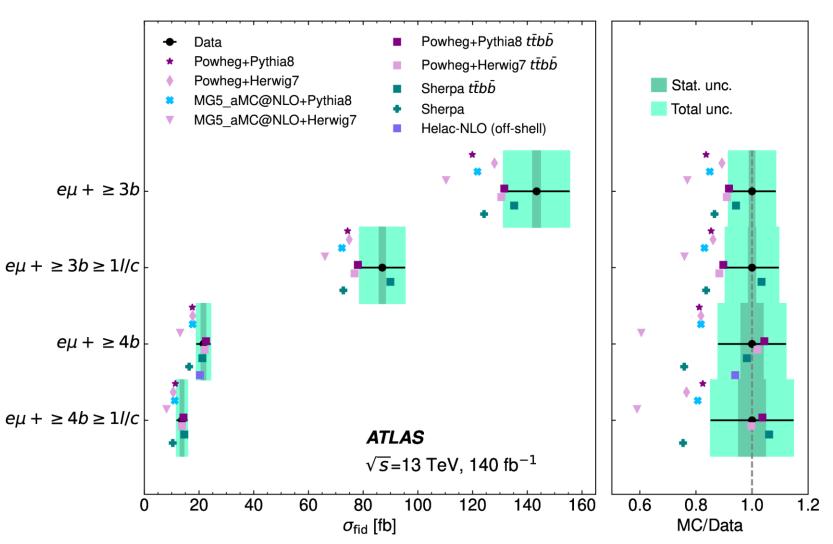
• Where:

$$f_{t\bar{t}b}^{k} = \frac{S_{t\bar{t}b,\text{reco}}^{k}}{S_{t\bar{t}b,\text{reco}}^{k} + \mathcal{B}_{t\bar{t}b,\text{reco}}^{k}} \quad f_{\text{accept},t\bar{t}b}^{k} = \frac{S_{t\bar{t}b,\text{reco}\wedge\text{part}}^{k}}{S_{t\bar{t}b,\text{reco}}^{k}} \quad f_{\text{eff},t\bar{t}b}^{i} = \frac{S_{t\bar{t}b,\text{part}\wedge\text{reco}}^{i}}{S_{t\bar{t}b,\text{part}}^{i}}$$

- *S^k*_{*ttb,reco*} : number of detector-level events belonging to the ttb category after scale factors applied
- $B^{k}_{ttb,reco}$: number of detector-level ttc and ttl events after scale factors
- $S^{k}_{ttb,reco \land part}$: number of detector-level ttb events in bin **k** which are also in particle-level bin **k**
- $S^{i}_{ttb,part}$: number of particle-level ttb events in bin *i*
- $S_{ttb,part/reco}^{i}$: number of particle-level ttb events in bin *i* that pass the fiducial selection in the same bin

Migration matrix for observable $p_T(b_1^{top})$ in fiducial region with ≥ 3 b-jets

Inclusive Fiducial Cross Sections


- Inclusive fiducial cross sections determined for each phase space region
 - Compared to several generators and modelling options
- Dominant uncertainties are systematic:
 - b-tagging, jet energy scale, and tt modelling

N^i			Fiducial cross-sections [fb]			
' unfold	Fiducial phase space	$\geq 3b$	$\geq 3b \geq 1l/c$	$\geq 4b$	$\geq 4b \geq 1l/c$	
\mathcal{L}	Measured	143 $\pm 1 \text{ (stat)}$	$\frac{87}{\pm 1 \text{ (stat)}}$	$\frac{22}{\pm 1 \text{ (stat)}}$	$\frac{14}{\pm 1 \text{ (stat)}}$	
	Powheg+Pythia 8 $t\bar{t}b\bar{b}$ (4FS)	±12 (syst) 132	±8 (syst)	$\pm 3 \text{ (syst)}$	$\pm 2 \text{ (syst)}$	
	Powheg+Pythia 8 $t\bar{t}b\bar{b}$ h_{bzd} (4FS)	129	74	21	13	
	Powheg+Pythia 8 $t\bar{t}b\bar{b}$ dipole (4FS)	128	71	22	13	
	POWHEG+PYTHIA 8 $t\bar{t}b\bar{b}$ p_{T}^{hard} (4FS)	129	68	21	12	
	Powheg+Herwig 7 $t\bar{t}b\bar{b}$ (4FS)	130	77	22	14	
	Sherpa $t\bar{t}b\bar{b}$ (4FS)	135	90	21	15	
	HELAC-NLO (off-shell) $e\mu + 4b$	-	_	20	-	
	Powheg+Pythia 8 $t\bar{t}$ (5FS)	120	74	18	11	
	Powheg+Herwig 7 $t\bar{t}$ (5FS)	128	75	18	11	
	MG5_AMC@NLO+Pythia8 $t\bar{t}$ (5FS)	122	72	18	11	
	MadGraph5_aMC@NLO+Herwig7 tt (5FS)	110	66	13	8	
	Sherpa 2.2.12 $t\bar{t}$ (5FS)	124	73	16	10	

Source	Fiducial cross-section phase space					
	≥ 3 <i>b</i> Unc. [%]	$\geq 3b \geq 1l/c$ Unc. [%]	≥ 4 <i>b</i> Unc. [%]	$\geq 4b \geq 1l/s$ Unc. [%]		
Data statistical uncertainty	1.0	1.2	3.9	4.		
Luminosity	0.8	0.8	0.8	0.		
Jet	3.4	5.2	6.6	8.		
<i>b</i> -tagging	5.1	4.9	6.5	6.		
Lepton and trigger	1.4	1.4	1.2	1.		
Pile-up	0.9	0.7	0.6	0.		
$t\bar{t}c/t\bar{t}l$ fit variation	1.7	1.7	0.8	0.		
$t\bar{t}c/t\bar{t}l$ shape variation	0.2	0.5	0.3	1.		
$t\bar{t}H/t\bar{t}V$ and non- $t\bar{t}$ background	1.1	1.1	2.2	2.		
Detector+background total syst.	6.7	7.6	9.7	11.		
Parton shower and hadronisation	2.9	3.5	1.5	3.		
$\mu_{\rm R}$ and $\mu_{\rm F}$ scale variations	0.7	0.6	0.2	0.		
Matrix element matching (p_T^{hard})	1.3	1.1	4.8	7.		
h _{damp}	1.8	1.5	2.9	3.		
ISR	0.1	0.4	0.2	0.		
FSR	3.1	3.6	3.3	3.		
RecoilToTop	1.8	1.9	2.4	3.		
PDF	0.2	0.2	0.1	0.		
NNLO reweighting	0.6	0.5	0.5	0.		
MC statistical uncertainty	0.2	0.2	0.5	0.		
$t\bar{t}$ modelling total syst.	5.2	5.7	7.2	9.		
Total syst.	8.5	9.6	12.1	14.		
Total	8.5	9.6	12.7	15.		

Inclusive Fiducial Cross Sections

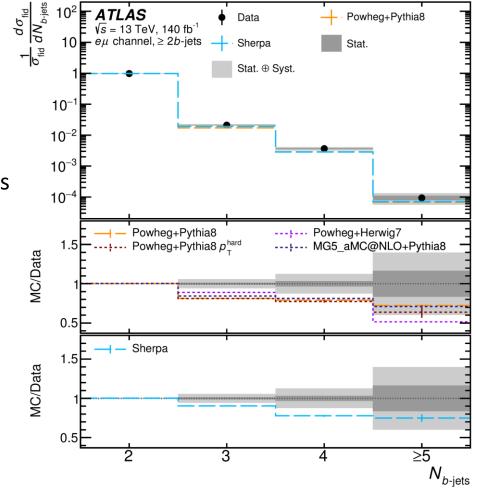
- ttbar (5FS) NLO ME+PS slightly under predicts additional b-jets production
- Sherpa with one parton at NLO (5FS) under predicts events with ≥3 and ≥4 b-jets
- Powheg ttbb predictions in 4FS describe data well in the ≥4 b-jets region
- Sherpa ttbb remains consistent with data in all four phase spaces

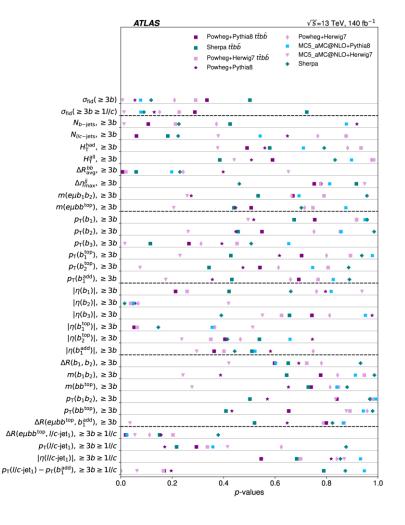
Differential Normalized Fiducial Cross Sections

Data

Powheg+Pythia8

ATLAS

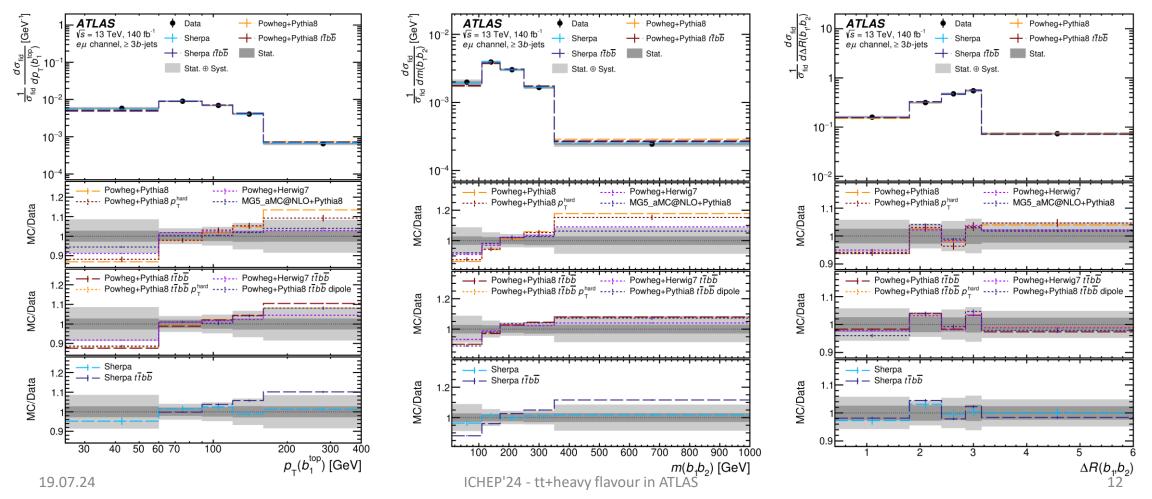

 $\sqrt{s} = 13 \text{ TeV}, 140 \text{ fb}^{-1}$


10

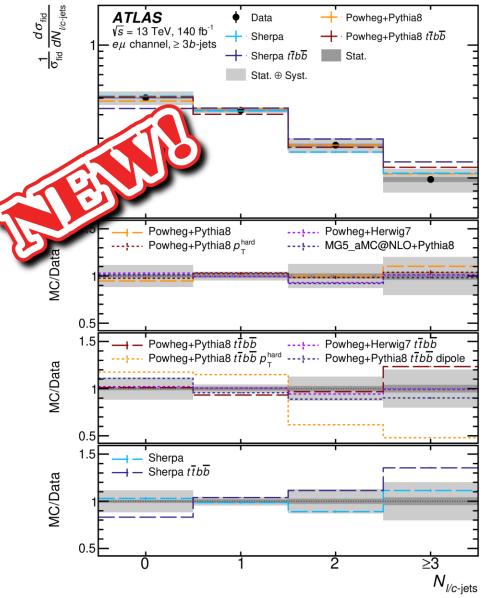
- Differential cross sections
 - Determined in each phase space region
 - And each observable
- Good general agreement with predictions
 - See distribution of p-values

unfold

unfold



 $\frac{1}{\sigma^{\rm fid}}.\frac{{\rm d}\sigma^{\rm fid}}{{\rm d}X^i} =$


Examples of Unfolded Distributions

- Fiducial region: lepton $p_T > 28$ GeV, jet $p_T > 25$ GeV, ≥ 3 b-jets
- From left to right: leading b-jet p_T ; invariant mass of 2 leading b-jets; ΔR between 2 leading b-jets

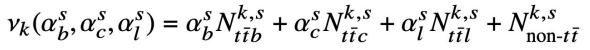
Summary and Outlook

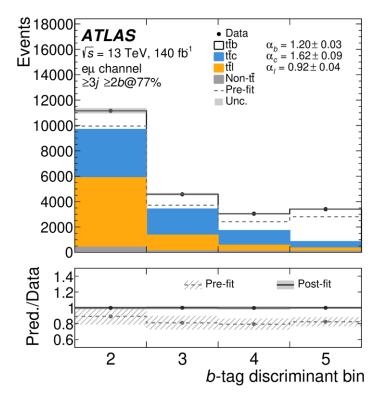
- Fiducial cross sections of top-quark + b-jets production were measured with 140 fb⁻¹ of data at 13 TeV
- The measured integrated fiducial cross-sections are consistent with some predictions from various NLO calculations
 - But several generators under-predict production of additional b-jets
- A great wealth of measurements available!
 - No MC generators simultaneously describe all differential observables
 - Differences between any two predictions are smaller than the measurement uncertainties for most observables

CERN-EP-2024-191

Backup Slides

b-jet Classification


- b-hadrons associated with closest b-quark and ghost-associated with particle-level jet
- If b-quark from top decay then b-jet identified as coming from top decays


- Use angular distances to calculate classifier w for each b-jet permutati
 - b₁ and b₂ from top, rest from QCD radiation
- Purity of classification:
 - In 53% (56%) of particle-level events, 2 b-jets correctly assigned to tops
 - In 53% (56%) of reconstructed, 2 b-jets correctly assigned to tops
 - Association fails in < 10% events with ≥ 3 b-jets as one is out of detetctor acceptance
 - Purity much better than both random association and pT-based association

tt+jets Background Estimation

- Templates use b-tagging weight of 3rd highest b-tagging discriminant in each event
 - Proxy for 3rd jet after b-jets from top decay
 - Templates include top-pair, ttH, ttV
- Global fit to inclusive region to determine overall scaling factors
 - Kinematic-dependent fit to evaluate systematic uncertainty
- Binned max-likelihood fit of [ttbb + ttb + ttc + ttl] to [data non-tt]
- In each bin k, number of events v_k given by:

	Inclusive region	Regions in terms of jet multiplicity and third highest- p_T jet- p_T bins		
	Global approach (nominal)	<i>Kinematic-dependent</i> approach (systematic)		
Category	$\geq 3j \geq 2b@77\%$	$3j \ge 2b@77\%$	$\geq 4j \geq 2b@77\%$	
	≥ 25 GeV	$25-35 \text{ GeV} \mid 35-50 \text{ GeV} \mid \ge 50 \text{ GeV}$	$25-50 \text{ GeV} \mid 50-75 \text{ GeV} \mid \ge 75 \text{ GeV}$	
tīb	\geq 3 <i>b</i> -jets	$\geq 3 b$ -jets	_	
t t b _{ex}	_	_	exactly 3 <i>b</i> -jets	
tībb	_	_	$\geq 4 b$ -jets	
tīc	$< 3 b$ -jets and $\geq 1 c$ -jet	$< 3 b$ -jets and $\geq 1 c$ -jet	$< 3 b$ -jets and $\geq 1 c$ -jet	
tīl	events that do not meet	events that do not meet	events that do not meet	
	above criteria	above criteria	above criteria	

Data and Monte Carlo

- Data: **140 fb**⁻¹ of √s = 13 TeV p-p collisions from LHC Run 2 (2015-2018)
- Monte Carlo simulations differ in:
 - Treatment of **b-quark mass**
 - Extra b quarks from matrix element or parton shower
 - Angular ordering of **parton shower** jets
 - Matching of parton shower and matrix element
 - Kinematics of extra b-jets
 - Flavour scheme in PDFs
- Comparing data with multiple MC generators at particle level

	MC sample	Generator	Process	Parton shower	Matching/ Parton shower settings	Tune	Use
Nominal	Powheg+Pythia8	Powheg Box v2	tī NLO	Рутніа 8.230	Powheg $h_{damp} = 1.5m_{top}$ $p_{T}^{hard} = 0$ globalRecoil recoilToColoured=ON	A14	nom.
Systematic	Powheg+Pythia8 h_{damp}	Powheg Box v2	tī NLO	Рутніа 8.230	Powheg $h_{\text{damp}} = 3m_{\text{top}}$	A14	syst.
uncertainty	Powheg+Pythia8 $p_{\rm T}^{\rm hard}$	Powheg Box v2	tī NLO	Рутніа 8.230	$\begin{array}{l} \text{Powheg} \\ p_{\text{T}}^{\text{hard}} = 1 \end{array}$	A14	syst.
· · · · · ·	Роwнес+Рутніа8 RecoilToTop	Powheg Box v2	tī NLO	Рутніа 8.230	Роwнед recoilToTop	A14	syst.
estimation	Powheg+Herwig 7	Powheg Box v2	tī NLO	Herwig 7.1.3	Powheg	H7.1-Default	syst.
	Powheg+Pythia8 dipole	Powheg Box v2	tī NLO	Рутніа 8.230	Powneg dipoleRecoil on	A14	comp.
	MadGraph5_aMC@NLO+Pythia8	MadGraph5_ aMC@NLO v2.6.0	tī NLO	Рутніа 8.230	MC@NLO	A14	comp.
	MadGraph5_aMC@NLO+Herwig7	MadGraph5_ aMC@NLO v2.6.0	tī NLO	Herwig 7.1.3	MC@NLO	H7.1-Default	comp.
	Sherpa	Sherpa 2.2.12	$t\bar{t}$ +0,1 parton at NLO +2,3,4 parton at LO	Sherpa	MEPs@NLO	Author's tune	comp.
Comparison	Powheg+Pythia8 $t\bar{t}b\bar{b}$	Powneg Box Res	<i>tībb</i> NLO	Рүтніа 8.230	Powheg Box Res $h_{bzd}=5$ $p_{T}^{hard}=0$ globalRecoil	A14	comp.
with data	Powheg+Pythia8 $t\bar{t}b\bar{b}$ $p_{\rm T}^{\rm hard}$	Powheg Box Res	tībb NLO	Рутніа 8.230	Powheg Box Res $p_{\rm T}^{\rm hard} = 1$	A14	comp.
	Powheg+Pythia8 $t\bar{t}b\bar{b}$ h_{bzd}	Powheg Box Res	$t\bar{t}b\bar{b}$ NLO	Рутніа 8.230	Powneg Box Res h _{bzd} =2	A14	comp.
	Powheg+Pythia8 $t\bar{t}b\bar{b}$ dipole	Powheg Box Res	<i>tīb</i> b̄ NLO	Рутніа 8.230	Powheg Box Res $h_{bzd}=2$ dipoleRecoil on	A14	comp.
	Powheg+Herwig 7 $t\bar{t}b\bar{b}$	Powheg Box Res	$t\bar{t}b\bar{b}$ NLO	Herwig 7.1.6	Powheg Box Res	H7.1-Default	comp.
	Sherpa $t\bar{t}b\bar{b}$	Sherpa 2.2.10	$t\bar{t}b\bar{b}$ NLO	Sherpa	MEPs@Nlo	Author's tune	comp.
	HELAC-NLO (off-shell)	Helac-NLO	$e\mu + 4b$ NLO	-	-	-	comp.