

HIGHLIGHTS ON TOP QUARK PROPERTIES AND MASS MEASUREMENTS WITH THE ATLAS DETECTOR

P. Strizenec (IEPSAS Košice)

ATLAS TOP PROPERTIES

1/20

2 Top mass measurements

3 Quantum physics fundaments

ONCLUSIONS

New ideas and pushing rare processes frontier is possible @LHC:

- LHC is a tt̄ factory, $\sigma(tt̄) \approx$ 830 pb at $\sqrt{s} =$ 13 TeV, ATLAS has collected about 116M tt̄ events
- in this presentation:
 - improving top mass measurements as the first step
 - using the dilepton channel at $\sqrt{s} = 13$ TeV (<u>ATLAS-CONF-2022-058</u>)
 - using the leptonic invariant mass at $\sqrt{s}=$ 13 TeV (JHEP 06 (2023) 019)
 - combination of ATLAS and CMS measurements at $\sqrt{s} = 7$ and 8 TeV (Phys. Rev. Lett. 132 (2024) 261902)
 - study the fundamental properties of quantum mechanics
 - observation of quantum entanglement in t \bar{t} (arXiV:2311.07288, accepted by Nature)

WHY MEASURE M_t

- precise measurement needed to check the consistency of the SM and restrict BSM
 - mass measurements helps to restrict the parameters space of BSM models.
 - Yukawa coupling ≈ 1 to Higgs: the top and Higgs masses play a important role in the EW vacuum stability.
- strong tt cross section dependence on top mass, important background in Higgs measurements and NP searches
- LHC is producing large amount of top quarks, multiple measurements are possible
- combinations could improve precision, very promising result from ATLAS+CMS

arXiV:2204.04204

TOP MASS FROM DILEPTON CHANNEL

- uses invariant mass $m_{\ell b}^{High}$ of the selected ℓb pair with the larger $p_{T\ell b}$ per event, more precise then using both pairs
- ML algorithm to pick the best combination of *l* and *b*-tagged jets, fully connected DNN with three hidden layers
- training on p_T and η of each ℓb pair, angular distance between paired ℓ and b as well as p_T and η of individual ℓ and b, and also m_{bb}
- data with 139 fb $^{-1}$ at $\sqrt{s}{=}13~{\rm TeV}$
- main systematics uncertainties comes from matrix element matching, jet energy scale and recoil effect (which is quoted separately)
- unbinned maximum-likelihood fit to data ATLAS-CONF-2022-058

 $\label{eq:recoil} \mbox{Result:} \quad m_{\rm top} = 172.21 \pm 0.20 (\mbox{stat}) \pm 0.67 (\mbox{syst}) \pm 0.39 (\mbox{recoil}) \mbox{ GeV}$

TOP MASS FROM SOFT MUON TAG

- event selection designed to collect $\ell \nu b j j' \bar{b}$ final states, and maximize the fraction of events where ℓ from the W and b-initiated jet with the muon from semileptonic decay come from the same top
- leptonic-only, invariant mass reconstruction of $m_{\ell\mu}$, lepton from W and soft μ from a b-hadron
 - smaller sensitivity to the jet energy scale and resolution
 - less sensitivity to top-quark production modeling than previously showed measurement
- data with 36.1 fb $^{-1}$ at \sqrt{s} =13 TeV
- binned-template profile likelihood fit used to find best value for m_t, systematics included as Gaussian-constrained nuisance parameters

Result: $m_{\mathrm{top}} = 174.41 \pm 0.39(\text{stat}) \pm 0.66(\text{syst}) \pm 0.25(\text{recoil})$ GeV

P. STRIZENEC (IEPSAS KOŠICE)

ATLAS TOP PROPERTIES

ICHEP2024, Prague

6/20

JHEP 06 (2023) 019

TOP MASS FROM SOFT MUON TAG

Source	Unc. on m_t [GeV]	Stat. precision [GeV]
Statistical and datasets		
Data statistics	0.39	
Signal and background model statistics	0.17	
Luminosity	< 0.01	±0.01
Pile-up	0.07	±0.03
Modelling of signal processes		
Monte Carlo event generator	0.04	±0.06
b, c-hadron production fractions	0.11	±0.01
b, c-hadron decay BRs	0.40	±0.01
b -quark fragmentation r_b	0.19	±0.06
Parton shower α_s^{FSR}	0.07	±0.04
Parton shower and hadronisation model	0.06	±0.07
Initial-state QCD radiation	0.23	±0.08
Colour reconnection	< 0.01	±0.02
Choice of PDFs	0.07	±0.01
Modelling of background processes		
Soft muon fake	0.16	±0.03
Multijet	0.07	±0.02
Single top	0.01	±0.01
W/Z+jets	0.17	±0.01
Detector response		
Leptons	0.12	±0.01
Jet energy scale	0.13	±0.02
Soft muon jet pT calibration	< 0.01	±0.01
Jet energy resolution	0.08	±0.07
b-tagging	0.10	±0.01
Missing transverse momentum	0.15	±0.01
Total stat. and syst. uncertainties (excluding recoil)	0.77	±0.03
Recoil uncertainty	0.25	
Total uncertainty	0.81	

- systematics ranking, grouped per source
- leading ones are due to the modeling of the top-quark pair production and modeling of the b-quark fragmentation and decay
- jet energy calibration uncertainty is sub-dominant
- nearly all of the main uncertainties are largely uncorrelated with those dominant in previous lepton+jets ATLAS measurements

TOP MASS ATLAS+CMS COMBINATION

- using BLUE [1], calculate or estimate the correlation between measurements, BLUE then calculates the corresponding uncertainty on the physics parameter
- ATLAS inputs 6 measurements, CMS the same channels plus single top, J/ψ and secondary vertex at 8TeV
- to see compatibility run "simultaneous" BLUE with two m_{top} parameters, m_{top}^{ATLAS} and m_{top}^{CMS} , excellent agreement, see above
- resulting precision is below 2 per mil [1] Nucl. Inst. and Meth. A 270 (1988) 110

lepton+jets 7 TeV

stat uncertainty

ATLAS+CMS combined

ATLAS+CMS

See Matteo's talk for the details

Result:

s = 7.8 TeV

stat

- Eur. Phys. J. Plus (2021) 136 → first analysis of top quark pair production from the quantum information point of view, gg→tt spin singlet state at threshold (80% of produced pairs)
- t lifetime shorter than hadronization and spin decorrelation time, spin info preserved in t→Wb, for W→ $\ell\nu$ spin info carried by ℓ

•
$$\frac{1}{\sigma} \frac{\mathrm{d}\sigma}{\mathrm{d}\Omega_1 \mathrm{d}\Omega_2} = \frac{1}{4\pi^2} (1 + \alpha_2 \mathbf{B}_1 \cdot \hat{\ell}_1 + \alpha_2 \mathbf{B}_2 \cdot \hat{\ell}_2 + \alpha_1 \alpha_2 \hat{\ell}_1 \mathbb{C} \hat{\ell}_2)$$

- $\bullet~\textbf{B}\simeq 0$ because most $t\bar{t}$ produced via QCD on LHC
- $\bullet \ {\rm Tr}[\mathbb{C}] < -1$ Peres-Horodecki criterion
- $\frac{1}{\sigma} \frac{\mathrm{d}\sigma}{\mathrm{d}\cos\varphi} = \frac{1}{2} (1 D\cos\varphi)$
- $D = \frac{\mathrm{Tr}\mathbb{C}}{3} \Rightarrow D < -\frac{1}{3}$

- entanglement marker $D = -3 \cdot \langle \cos \varphi \rangle$, with φ angle between ℓ from $t\bar{t}$ in rest frame:
 - $\bullet~t\bar{t}$ boosted to its rest frame
 - each t $ightarrow \ell
 u b$ boosted into its rest frame
- measurement performed on stable particle level
- requires full event reconstruction

- partition events into three selections:
 - 340 $< M_{t\bar{t}} <$ 380: entanglement signal region
 - $380 < M_{t\bar{t}} < 500$: validation region (dilution from mis-reconstruction)
 - 500 $< M_{t\bar{t}}$: **no-entanglement** validation region

- dilepton e μ channel with \geq 1 b-jet, 140 fb⁻¹ at $\sqrt{s} = 13$ TeV
- very clean channel, 90 % purity
- ν reconstructed based on kinematic constraints on top and W mass
- D distorted by detector response
 - calibration curve approach, derive true *D* vs detector-level *D*
 - systematics with their own curves, quadratic envelope
 - event-by-event reweighting, $\cos \varphi$ distributions for various D
 - background $\cos \varphi$ estimate based on MC
 - tW, VV, ttW
 - data-driven normalization of non-prompt leptons from samesign eµ events

- Calculated detector-level *D* from data and corrected using calibration curve
- $D_{
 m obs}$ = -0.547 \pm 0.002 (stat.) \pm 0.021 (syst.)
- $D_{exp} = -0.470 \pm 0.002$ (stat.) ± 0.018 (syst.) arXiV: 2311.07288, accepted by Nature
- observation of quantum entanglement with $>5\sigma$ significance <u>CERN physics briefing</u> <u>CERN Courier article</u>
- good agreement between measured and predicted *D* in validation regions
- measurement dominated by systematic uncertainties, mainly signal modeling
- paves the way for future measurements of quantum information at the LHC

Particle-level Invariant Mass Range [GeV]

ATLAS benefits from large top samples provided by LHC during Run-2 and study fundamental SM properties:

- top mass measurements in different channels, with increasing precision
- combination with CMS results brings the most precise top mass result to date
- first observation of quantum entanglement in "bare" quarks, at highest energy so far

Backup

recoil effects in top-quark decays

- PYTHIA 8 used in this analysis recoils subsequent gluons against b-quark by default
- too small out-of-cone radiation, affects b-jets shape, too narrow reconstructed top-mass distribution
- recent setup allows the top quark to be the recoiler for the gluon radiation
- recoil-to-top likely overestimates the effect, no dedicated tune has been performed yet
- the full difference between the mass values extracted from pseudo-data using these two settings is used as an additional uncertainty

TOP MASS FROM DILEPTON CHANNEL

parametrisation (two Gauss and cosine) of template distributions of $m_{\ell b}^{High}$ with linear dependence of parameters on $m_{\rm top}$, with very good description $(\chi^2/{\rm ndf} = 1.01 \text{ and } P(\chi, {\rm ndf}) = 0.44)$

	$m_{\rm top} [{\rm GeV}]$
Result	172.21
Statistics	0.20
Method	0.05 ± 0.04
Matrix-element matching	0.40 ± 0.06
Parton shower and hadronisation	0.05 ± 0.05
Initial- and final-state QCD radiation	0.17 ± 0.02
Underlying event	0.02 ± 0.10
Colour reconnection	0.27 ± 0.07
Parton distribution function	0.03 ± 0.00
Single top modelling	0.01 ± 0.01
Background normalisation	0.03 ± 0.02
Jet energy scale	0.37 ± 0.02
b-jet energy scale	0.12 ± 0.02
Jet energy resolution	0.13 ± 0.02
Jet vertex tagging	0.01 ± 0.01
b-tagging	0.04 ± 0.01
Leptons	0.11 ± 0.02
Pile-up	0.06 ± 0.01
Recoil effect	0.39 ± 0.09
Total systematic uncertainty (without recoil)	0.67 ± 0.05
Total systematic uncertainty (with recoil)	0.77 ± 0.06
Total uncertainty (without recoil)	0.70 ± 0.05
Total uncertainty (with recoil)	0.80 ± 0.06

P. Strizenec (IEPSAS Košice)

TOP MASS FROM SOFT MUON TAG

310 + 100

 480 ± 130

 $39\,700 \pm 2500$

42 087

6.3 + 1.4

17.2 + 2.9

 530 ± 140

65000 + 4000

66 891

P. Strizenec (IEPSAS Košice)

Z+HF jets

Diboson

Multijet

Data

Total Expected

TOP MASS ATLAS+CMS COMBINATION

Uncertainty category		ρ Scan range	$\Delta m_t/2$ [MeV]	$\Delta \sigma_{m_t}/2$ [MeV]	Uncertainty category	Uncert	Uncertainty impact [GeV]		
	ρ					LHC	ATLAS	CMS	
IES 1	0	_	_	_	b-JES	0.18	0.17	0.25	
IES 2	0	$[-0.25, \pm 0.25]$	8	7	b tagging	0.09	0.16	0.03	
IES 3	0.5	[+0.25, +0.75]	1	<1	ME generator	0.08	0.13	0.14	
h IEC	0.95	[+0.5 + 1]	26	5	JES 1	0.08	0.18	0.06	
- JES	0.05	[+0.5, +1]	20	-1	JES 2	0.08	0.11	0.10	
g-JE5	0.65	[+0.5, +1]	2	<1	Method	0.07	0.06	0.09	
I-JES	0	[-0.25, +0.25]	1	<1	CMS b hadron B	0.07	_	0.12	
CMS JES 1	_	_	_	_	QCD radiation	0.06	0.07	0.10	
JER	0	[-0.25, +0.25]	5	1	Leptons	0.05	0.08	0.07	
Leptons	0	[-0.25, +0.25]	2	2	JER	0.05	0.09	0.02	
b tagging	0.5	[+0.25, +0.75]	1	1	CMS top quark p_T	0.05	_	0.07	
p_{T}^{miss}	0	[-0.25, +0.25]	<1	<1	Background (data)	0.05	0.04	0.06	
Pileup	0.85	[+0.5, +1]	2	<1	Color reconnection	0.04	0.08	0.03	
Trigger	0	[-0.25, +0.25]	$<\!\!1$	<1	Underlying event	0.04	0.03	0.05	
ME generator	0.5	$[\pm 0.25, \pm 0.75]$	<1	4	g-JES	0.03	0.02	0.04	
OCD radiation	0.5	[+0.25, +0.75]	7	1	Background (MC)	0.03	0.07	0.01	
QCD facilation	0.5	[+0.25, +0.75]	1	1	Other	0.03	0.06	0.01	
Hadronization	0.5	[+0.25, +0.75]	1	<1	I-JES	0.03	0.01	0.05	
CMS b hadron B	_		_	_	CMS JES 1	0.03		0.04	
Color reconnection	0.5	[+0.25, +0.75]	3	1	Pileup	0.03	0.07	0.03	
Underlying event	0.5	[+0.25, +0.75]	1	<1	JES 3	0.02	0.07	0.01	
PDF	0.85	[+0.5, +1]	1	<1	Hadronization	0.02	0.01	0.01	
CMS top quark p_T	—	_	_	_	$p_{\mathrm{T}}^{\mathrm{miss}}$	0.02	0.04	0.01	
Background (data)	0	$[-0.25 \pm 0.25]$	8	2	PDF	0.02	0.06	< 0.01	
Background (MC)	0.95	[-0.23, +0.23]	2	~1	Trigger	0.01	0.01	0.01	
Dackground (MC)	0.65	[+0.3, +1]	2	<1	Total systematic	0.30	0.41	0.39	
Method	0	_	_	—	Statistical	0.14	0.25	0.14	
Other	0	_	_	_	Total	0.33	0.48	0.42	

st 0.00	g+Pythia 8 g+Herwig 7 ATLAS S √S = 13 T	imulation ∂V , particle + + + + + + + + + + + + + + + + + + +			Herwig 7 LO Dipole shower Herwig 7 LO Angular shower $\sqrt{s} = 13$ TeV, particle level -0.5 0 0.5 $\cos \varphi, m_{\rm H}^2 < 380$ GeV	
Source of uncertainty	$\Delta D_{\rm observed}(D = -0.547)$	$\Delta D [\%]$	$\Delta D_{\rm expected}(D = -0.470)$	ΔD [%]	Systematic uncertainty source	Relative size (for SM D value)
Signal modeling	0.017	3.2	0.015	3.2	Top-quark decay	1.6%
Electrons	0.002	0.4	0.002	0.4	Parton distribution function	1.2%
Muons	0.001	0.1	0.001	0.1	Recoil scheme	1.1%
Jets	0.004	0.7	0.004	0.8	Final state radiation	1 1%
b-tagging	0.002	0.4	0.002	0.4	Scale upcortaintion	1.1%
Pile-up	< 0.001	< 0.1	< 0.001	< 0.1	NNL O anni altin a	1.1%
E _T miss	0.002	0.3	0.002	0.4	NNLO reweighting	1.1%
Backgrounds	0.010	1.8	0.009	1.8	p I hard setting	0.8%
Total statistical uncertainty	0.002	0.3	0.002	0.4	Top-quark mass	0.7%
Total statistical uncertainty	0.002	2.0	0.002	2.0	Initial-state radiation	0.2%
total systematic uncertainty	0.021	3.8	0.018	3.9	Parton shower and hadronization	0.2%
Total uncertainty	0.021	3.8	0.018	3.9	h _{damp} setting	0.1%

P. Strizenec (IEPSAS Košice)

ICHEP2024, PRAGUE 20 / 2