Measurement of single W and Z boson properties in the Forward Region

Ahmed Abdelmotteleb

ahmed.abdelmotteleb@cern.ch

University of Warwick

On behalf of the LHCb Collaboration ICHEP 2024 – Prague, Czech Republic 18 July 2024

Topics

□ The LHCb detector

□ Rare *W* and *Z* decays [Chin. Phys. C 47 093002]

 $\Box Z$ cross-section at $\sqrt{s} = 5.02$ TeV [JHEP 02 (2024) 070]

 $\Box Z \rightarrow \mu^+\mu^-$ angular coefficients at $\sqrt{s} = 13 \text{ TeV}$ [Phys. Rev. Lett. 129 (2022) 091801]

□ Measurement of the effective leptonic weak mixing angle **NEW!**

Single-arm forward spectrometer

 Designed for heavy flavor physics (b and c hadrons)

Key features:

Forward geometry (covering pseudorapidty range 2 < η < 5)

LHCb detector (Run-II)

- Excellent vertex resolution and particle identification
- High-precision momentum measurement
- Efficient trigger system for selecting rare decay processes

Electroweak Physics at LHCb

- Cannot measure missing energy
- Low luminosity with respect to ATLAS and CMS
- + Low pile-up environment
- + Low momentum triggers
- + Complementary coverage to ATLAS and CMS (with some overlapping at low pseudorapidity)
- Excellent performance of tracking and muon detector
- Boson Production and asymmetries (e.g. W and Z cross-sections, PDF functions)
- Rare decays (e.g. radiative decays, LFU tests)

Rare W and Z decays

<u>[Chin. Phys. C **47** 093002]</u> W^+ Focus on radiative decays of W and Z bosons W^+ Update on search for $W^+ \rightarrow D_s^+ \gamma (\rightarrow K^+ K^- \pi^-)$ First reported search for $Z \to D^0 \gamma (\to K^- \pi^+)$ d, s, b $Z \sim \sim \sim$ 2018 data @ $\sqrt{s} = 13 \text{ TeV} \rightarrow 2.0 \text{ fb}^{-1}$

Rare W and Z decays

- No significant signal is observed above background
- For the $W^+ \rightarrow D_s^+ \gamma$ decay, the absolute BR upper limit is determined to be 6.5×10^{-4} at 95% C.L
- For the $Z \rightarrow D^0 \gamma$ decay, the absolute BR upper limit is determined to be **2**. **1** × **10**⁻³ at 95% C.L

Decay	Observed	Expected
$Z \rightarrow D^0 \gamma$	2.14×10^{-3}	1.91×10^{-3}
$W^+ \rightarrow D_s^+ \gamma$	1.03×10^{-3}	1.46×10^{-3}
$W^- \rightarrow D_s^- \gamma$	1.38×10^{-3}	1.88×10^{-3}
$W^{\pm} \rightarrow D_s^{\pm} \gamma$	6.52×10^{-4}	1.19×10^{-3}

Z cross-section at $\sqrt{s} = 5.02$ TeV

- Particularly important for constraining *u*-, *d*-quark PDFs at high *x* region
- **High purity**: $\frac{N_{bkg}}{N_{sig}} \sim 2\%$
- ϕ_{η}^* : the scattering angle of the muons with respect to the proton beam direction in the rest frame of the dimuon system

Ahmed Abdelmotteleb | W and Z at LHCb | ICHEP2024

 γ^*/Z

Z cross-section at $\sqrt{s} = 5.02$ TeV

[JHEP 02 (2024) 070]

Source	$\Delta\sigma [{ m pb}]$	$\Delta\sigma/\sigma~[\%]$
Luminosity	0.79	2.00
Statistical	0.70	1.77
Tracking	0.40	1.01
Efficiency Closure	0.24	0.61
Trigger	0.21	0.54
Background	0.19	0.48
Identification	0.10	0.25
FSR	0.07	0.18
Calibration	$<4.0\times10^{-3}$	< 0.01
Total Systematic (excl. lumi.)	0.56	1.42

$Z \rightarrow \mu^+ \mu^-$ angular coefficients at $\sqrt{s} = 13$ TeV

[Phys. Rev. Lett. 129 (2022) 091801]

- Run-II data (2016 2018) → 5.1 fb⁻¹
- $y_Z > 2$
- $75 < M_{\mu\mu} < 105 \, {\rm GeV}/c^2$
- Measured at Born level
- Total uncertainty dominated by **statistical uncertainty**

Presence of vector and axial-vector couplings that depend on θ_W introduces a **forward-backward asymmetry** of angular distribution of lepton pairs in DY events

Pythia8, NNPDF31, $\sqrt{s_{pp}} = 14 \text{ TeV}$

0.85

0.8

0.75

0.7

0.65

0.6

0.55

0.5

of initial state quark

LHCb

LHCb-PUB-2018-013

- Key parameter in SM
- A 3.2 σ difference exists between • the two most precise individual measurements (SLD and LEP)
- Fraction 6.0 Potential BSM process dependence •
- At large rapidities have asymmetric ٠ initial state:
 - > One parton at high x tends to be a valence quark
 - \succ Other at low *x* tends to be an anti-quark
- PDF uncertainty is smallest in the ٠ forward region

12

- Run-II pp collision dataset (2016-2018) @ $\sqrt{s} = 13 \text{ TeV} \rightarrow 5.3 \text{ fb}^{-1}$
- Fiducial region:
 - \succ 2.0 < η_μ < 4.5
 - $\geq p_T^{\mu} > 20 \, \text{GeV/c}$
 - \succ 66 < M_{µµ} < 116 GeV/c²
- Hadronic and heavy-flavour backgrounds are suppressed to the **percent level** by isolation, muon track fit, and muon impact parameter requirements.
- Total background fraction, within the fiducial kinematic region for the measurement is just 2×10^{-3}
- All backgrounds are estimated through simulation and then scaled to the data →background subtraction

• Final result:

 $sin^{2} \theta_{eff}^{lept} = 0.23152 \pm 0.00044(stat.) \pm 0.00005(exp.) \pm 0.00022(theory)$

- Consistent with previous measurements and indirect determinations from global electroweak fit
- Aim to improve statistical uncertainty with LHCb Upgrade I, which includes a **fivefold** increase in instantaneous luminosity

LHCb with its unique coverage is an important player when it comes to electroweak physics

•

Summary

- Upper limits on rare W and Z decays using 2018 data
- High purity Z cross-section measurement at $\sqrt{s} = 5.02$ TeV
- Study of $Z \rightarrow \mu^+ \mu^-$ angular coefficients at $\sqrt{s} = 13$ TeV (Born level, ongoing need for more statistics)
- Precise weak mixing angle measurement (also need more statistics)
- Anticipate significant statistical improvements in Run • 3 with five times the instantaneous luminosity!

Backup Slides

- Effect of detection efficiency and background subtraction on the measured A_{FB}
- Tiny effect

A_{FB} systematics

- Efficiency:
 - Randomly vary estimated efficiencies (trigger, muon identification, and tracking)
- Background:
 - Assumed cross-sections varied up and down by 50%
- Physics:
 - Simulated signal events are weighted to match the kinematic distributions predicted by the DYTurbo program

 \rightarrow Tiny effect compared to statistical uncertainties

A_{FB} templates EW normalisation scheme

- SM templates can be derived from 3 electroweak parameters: two masses and one coupling
- Different schemes take different input parameters
- G_f scheme: G_μ , m_W , m_Z
 - Not stable wrt higher order effects
 - Not used in the default measurement
- <u>xW</u> scheme: G_{μ} , m_Z , $\sin^2 \theta_{\text{eff}}^{\text{lept}}$
 - Defines $\sin^2 \theta_{\text{eff}}^{\text{lept}}$ clearly in theory context
 - Recommended for use by LHC-wide Electroweak Working Group experts

