

"Misidentification rate" method

Basic idea

- Control regions with inverted lepton track "quality" cuts (ID working point, isolation, etc.)
- \rightarrow enriched with non-prompt backgrounds
- Estimate non-prompt by MC subtraction in regions with inverted cuts for one lepton (N_{PF}) and both leptons (N_{FF})
- Reweight the events using the "misidentification rate" f to obtain the result in the signal region:

$$N_{PP} = \frac{f}{1-f} N_{PF} - \frac{f_1 f_2}{(1-f_1)(1-f_2)} N_{FF}$$

 The "misID rate" is measured in a separate control region as a function of lepton (p_T, η) \rightarrow Usually, single lepton events or DY Z peak events with a third additional lepton are used

Improvements

- Template fits can help achieving better estimates of the "misID rate" and/or the background distribution
- Function fits are often used to obtain smooth functional forms for the "misID rate"
- \rightarrow symbolic regression tools (e.g., pySR) can be useful
- More statistics allow for more sophisticated "misID rate" binning and categorization
- More control regions used to evaluate, apply and validate the "misID rate" in certain analyses

 \rightarrow E.g., [6] splits the electron phase space into 3 parts and makes use of eµ event samples to get a total of 71 control regions (+8 signal regions)!

3. Use in the signal region

"Matrix" method

Basic idea

Very rarely used in DY analyses, but technically possible

Extension of the "misidentification rate" method

 \rightarrow additionally uses the prompt lepton efficiency ϵ to be less reliant on MC

Events with prompt (R) and non-prompt (N) leptons are related to events with reconstructed leptons that pass (P) or fail (F) the quality cuts as follows:

 $\epsilon_1 \epsilon_2 \quad \epsilon_1 f_2 \quad f_1 \epsilon_2 \quad f_1 f_2 \setminus \langle N_{RR} \rangle$ $\epsilon_1 \tilde{\epsilon}_2 \quad \epsilon_1 \tilde{f}_2 \quad f_1 \tilde{\epsilon}_2 \quad f_1 \tilde{f}_2 \mid N_{RN}$ N_{PF} N_{FP} $\tilde{\epsilon}_1 \epsilon_2 \quad \tilde{\epsilon}_1 f_2 \quad \tilde{f}_1 \epsilon_2 \quad \tilde{f}_1 f_2 \quad N_{NR}$ N_{FF} $\langle N_{NN} \rangle$ $\begin{bmatrix} \tilde{\epsilon}_1 \tilde{p}_2 & \tilde{\epsilon}_1 \tilde{f}_2 & \tilde{f}_1 \tilde{\epsilon}_2 & \tilde{f}_1 \tilde{f}_2 \end{bmatrix}$

here, $\tilde{x} \equiv 1 - x$

 Inverting this matrix allows us to obtain the prompt and non-prompt contributions from signal + control region distributions:

 $\left(\tilde{f}_1 \tilde{f}_2 - \tilde{f}_1 f_2 - f_1 \tilde{f}_2 f_1 f_2 \right) \langle N_{PP} \rangle$

[2] NNPDF Collaboration. The path to proton structure at 1% accuracy. EPJC 82 428, 2022.

[3] David Barney. CMS Slice. CMS-OUTREACH-2018-017.

[4] CMS Collaboration. Measurement of the Drell-Yan forward-backward asymmetry at high dilepton masses in proton-proton collisions at $\sqrt{s} = 13$ TeV. JHEP 08 063, 2022.

[5] CMS Collaboration. Measurement of the mass dependence of the transverse momentum of lepton pairs in Drell–Yan production in proton–proton collisions at $\sqrt{s} = 13$ TeV. EPJC 83 628, 2023. [6] CMS Collaboration. Measurement of the Drell-Yan forward-backward asymmetry and of the effective leptonic weak mixing angle using proton-proton collisions at 13 TeV. CMS-PAS-SMP-22-010.

[7] T. Gillam, Ch. Lester, Improving estimates of the number of 'fake' leptons and other mis-reconstructed objects in hadron collider events: BoB's your UNCLE. JHEP 11 031, 2014.

