Search for monopole production in ultraperipheral Pb+Pb collisions with the ATLAS detector

Krzysztof Cieśla (AGH Kraków)

on behalf of the ATLAS collaboration

42nd International Conference on High Energy Physics 18 – 24 July 2024

Heavy-ion ultraperipheral collisions

- Ultraperipheral (UPC) Pb+Pb collisions are intense source of quasi-real photons, with each photon flux scaling with Z^2
- Photon-induced processes characterised by a very clean signature and almost no background
- Various types of interactions possible:

UPC collisions are a very attractive place to look for BSM processes

Magnetic monopoles

- Pb+Pb UPC can be used to search for magnetic monopole pair production
- Occurs in strong magnetic fields, primarily via the Schwinger mechanism
- First search in Pb+Pb from MoEDAL released in 2022 (Nature 602, 63–67 (2022))
- Large coupling of $M\bar{M}{\rm s}$ to photons \to perturbation theory could not be used \to affects pp searches interpretations
- MM cross-section in HI UPC can be computed nonperturbatively using semiclassical models, e.g. free-particle approximation (FPA, <u>arXiv:1902.04388</u>):

$$\sigma_{FPA} = \frac{\omega}{m} \frac{2(q_m B)^4 R_{Pb}^4}{9\pi^2 m^4 \omega^2} \ \exp(-4m/\omega)$$

- Breaks down for light monopoles (m < 20 GeV)
- Back-to-back monopole pair production with isotropic angular distribution

$$\frac{d\sigma_{FPA}(|p|)}{d\sigma_{FPA}(0)} = exp\left[-4/\omega\left(\sqrt{m^2 + |p|^2} - m\right)\right]$$

Low-energy monopole interaction in ATLAS

- An example: simulated magnetic monopoles pair with m = 20 GeV and varying p_T
- Parabolic trajectory in *r*-*z*
- No bending in r- φ
- Energy loss via δ -electrons: always bend anti-clockwise in B-field
- Monopoles with $p_T < 300$ GeV - never reach calorimeter
- Monopoles with p_T < 30 GeV – typically do not reach SCT
- Main focus: **Pixel detector** activity!

 $p_T = 20 \text{ GeV}$

 $p_{T} = 50 \text{ GeV}$

 $p_T = 280 \,\, {\rm GeV}$

ZDC UPC categories

 \sim 60% events @ $m_X =$ 30 GeV

 \sim 30% events @ m_X = 30 GeV

Xn0n

Pb*

Pb

- Different UPC topologies possible due to emission of neutrons
- Crucial role of Zero Degree Calorimeters
- Fraction of XnXn events increases with central system mass

Our primary signal category

 ${\sim}10\%$ events @ m_X = 30 GeV

Analysis strategy

- Using 2023 Pb+Pb data at $\sqrt{s_{\rm NN}}=5.36$ TeV, 1.6 $\rm nb^{-1}$
 - First ATLAS result using Run3 Pb+Pb data
- Signal trigger:
 - L1: presence one or more neutrons in both ZDCs, and total $E_T < 10$ GeV in calorimeter
 - HLT: presence of more than 100 Pixel clusters
 - Prescale: about 1/6 of events were saved $\rightarrow 0.262 \ nb^{-1}$
- Supporting trigger: ZDC activity on either side, same as signal trigger otherwise – background estimation, 9.6 μb⁻¹

Offline event selection

- At least 150 Pixel clusters, including at least 50 IBL clusters
- At most one reconstructed charged-particle track ($p_T>$ 100 MeV, $|\eta|<$ 2.5, $|d_0|<$ 1 mm) to suppress collision backgrounds
- At most one calorimeter cluster ($E_T>$ 100 MeV, $|\eta|<$ 4.9) to suppress the remaining collision backgrounds
- Additional cuts to suppress Pixel detector noise
- Signal region definition: transverse thrust T > 0.95

$$T = \frac{1}{n_{PixCL}} \sum_{i=i}^{n_{PixCL}} |\hat{r}_i \cdot \hat{n}|$$

Background estimation (I)

- Background: **Beam-induced-background** (BIB) characterised by particles almost parallel to the beam line, especially one with small radial range
- Fully data-driven background estimation method
- Events in CR2 are used to extrapolate the background contribution from CR1 to SR cross-checked in VR

Region	SR	VR	CR1	CR2			
Trigger		signal		ZDC XOR			
n_{trk}		≤ 1		≤ 1			
n_{TC}		≤ 1		1–3 (incl. at least 1 OOT)			
n_{PixCl}		> 150		> 150			
n_{IBLCI}		> 50		> 50			
$f_{\rm leading-module}$		< 0.9		< 0.9			
T	> 0.95	0.87 - 0.95	≤ 0.87	—			

Background estimation (II)

- CR2-based background estimate adequately describes the data
- Enhanced event activity at $\phi_T \approx 0$ and $\phi_T \approx \pi$ characteristic for BIB
- Background estimate in SR: 4 \pm 4 events

XnXn correction

• Need to correct signal Monte Carlo (0n0n) for XnXn requirement in the data:

$$p_{XnXn}^{eff} = (2 \cdot f_{0nXn} \cdot p_{EMPU} + f_{XnXn}) \cdot (1 + f_{diss})$$

- f_{0nXn} and f_{XnXn} derived from SuperChic 4.2
- $f_{diss}=0.13$ derived from $\gamma\gamma
 ightarrow l^+l^-$ events $^{
 m Phys. Rev. C 104 (2021) 024906}_{
 m JHEP \ 06 (2023) 182}$
- p_{EMPU} estimated to be 0.038 for signal trigger
- Cross-checked with dilepton events in three rapidity bins

Systematic uncertainties

- Detector material modelling: alternative geometries with increased detector material: $<1\% \rightarrow 20\%$ effect
- δ-electrons propagation range: low energy δ-electrons evolution simulated only down to some kinetic energy threshold: <3% effect
- δ-electrons production modelling: dE/dx formulas for ionisation by monopoles have ±3% uncertainty in analysis kinematic region → reducing δ-electrons production rate by 3%: 2-5% effect
- Luminosity (3.5%, preliminary)

- Pixel noise modelling: mismodelling observed while comparing "empty" events with neutrino-gun MC \rightarrow pixel cluster overlay applied: <1% effect
- Calorimeter noise modelling: procedure similar to pixel noise modelling: $\sim 1\%$ effect
- XnXn weight modelling (20%): covers data/MC differences observed for $\gamma\gamma \rightarrow l^+l^-$ production and differences between nominal (SuperChic) and alternative models for f_{0nXn} and f_{XnXn} (STARlight MC, Gamma-UPC MC)

Mass point [GeV]	20	30	40	50	60	70	90	100	120	150
Relative sig. yield var.	0.21	0.22	0.21	0.22	0.22	0.22	0.22	0.24	0.30	0.38

Magnetic monopole production limits

- 3 events in SR, consistent with background estimate of 4 \pm 4 events
- Cross-section upper limits computed using the CL_s method for $q_m = 1g_D$, in mass range between 20 and 150 GeV and assuming the FPA model
- Better sensitivity compared to MoEDAL by at least order of magnitude
- Excluded magnetic monopoles with mass < 120 GeV

Summary

- The first ATLAS result using 2023 Pb+Pb data and the first ATLAS search for magnetic monopoles in Pb+Pb collisions
- A novel method devised by ATLAS for searches of $M\bar{M}$ in Pb+Pb UPC data presented
- Search relying on semi-classical FPA model with $q_m = 1g_D$
- Main focus on the Pixel detector activity
- Crucial role of ZDC in triggering \rightarrow XnXn correction required to properly describe the data
- Largest systematic uncertainty contribution from alternative detector geometries and XnXn correction
- Background estimate of 4 \pm 4 events with 3 events observed
- The best cross-section upper limits for $M\bar{M}$ in mass range between 20 and 150 GeV are set
- This new approach **can be further explored** for other similar searches, i.e. heavy ioninsing particles (HIPs)

Backup

Signal MC control plots

CR control plots

3/6

VR control plots

4/6

FPA monopoles average p_T

Transverse thrust

- Monopole has straight-line trajectory in $r-\varphi \rightarrow$ passage through the detector forms highly collimated shower (δ -electrons)
- Calculate "transverse thrust" using Pixel clusters:

$$T = \frac{1}{n_{PixCL}} \sum_{i=1}^{n_{PixCL}} |\hat{r}_i \cdot \hat{n}|$$

- $\hat{r_i}$ unit vector of cluster orientation in the lab frame
- \hat{n} direction which maximizes thrust

Properties:

- $T \in [2/\pi, 1]$
- $T\approx 2/\!\pi$ uniform distribution, roughly the property of our backgrounds
- $T\approx 1-{\rm perfectly}$ aligned distribution, approximately the property of our signal