Thermal lattice QCD results from the FASTSUM collaboration

Gert Aarts¹, **Chris Allton**¹, Naeem Anwar¹, Ryan Bignell⁶, Timothy Burns¹, Sergio Chaves García-Mascaraque¹, Simon Hands², Benjamin Jäger³, Seyong Kim⁴, Maria Paola Lombardo⁵, Benjamin Page¹, Sinead Ryan⁶, Jon-Ivar Skullerud⁷, Antonio Smecca¹, Thomas Spriggs¹

(1) Swansea University, U.K.
(2) University of Liverpool, U.K.
(3) University of Southern Denmark, Denmark
(4) Sejoyng University, Korea
(5) INFN Firenze, Italy
(6) Trinity College, Dublin, Ireland
(7) National University of Ireland Maynooth, Ireland

- FASTSUM approach
- Open Charm Mesons
- Charm Baryons
- Interquark potential in bottomonium •
- Spectral Functions

Overview

FASTSUM Approach: Anisotropic Lattice

Spectral Quantities:

Bottomonium Charmed mesons Heavy Baryons Light Hadrons

Interquark potential

Conductivity

FASTSUM Approach: Anisotropic Lattice

 $a_{\tau} \rightarrow 0$

 $a_{\tau} \rightarrow 0$

 $a_{\tau} \rightarrow 0$

 $a_{\tau} \rightarrow 0$

 $N_{\tau} \rightarrow 0$

 $a_{\tau} \rightarrow 0$

Going hotter...

 $a_{\tau}N_{\tau}$

FASTSUM Approach: Anisotropic Lattice

 $a_{\tau} \rightarrow 0$

 $N_{\tau} \rightarrow 0$

FASTSUM Approach: Lattice Parameters

Generation 2L (2+1) flavour a_s ~ 0.112 fm

Gauge Action: Anisotropic, Symanzik-improved

Fermion Action: Wilson-clover, tree-level tadpole, stout-smeared links

- FASTSUM approach
- **Open Charm Mesons** •
- Charm Baryons
- Interquark potential in bottomonium •
- Spectral Functions

Overview

Charmed Mesons: $D_{(s)}$ and $D^*_{(s)}$ Sergio Chaves arXiv: 2209.14681

• Not studied at $T \neq 0$ before (on lattice) (Open Charm)

• Confined phase:

$$G(\tau) \sim \cosh(-M(\tau - 1/2T))$$

• Periodic for all T:

$$G(1/T - \tau) = G(\tau)$$

			J^P	PDG [MeV]	$M [{ m MeV}]$
	D	pseudoscalar	0-	1869.65(5)	1876(4)
	D^*	vector	1-	2010.26(5)	2001(4)
	D_0^*	scalar	0^+	2300(19)	2222(10)
	D_1	axial-vector	1+	2420.8(5)	2325(43)
ĺ	D_s	pseudoscalar	0-	1968.34(7)	1972(5)
	D_s^*	vector	1-	2112.2(4)	2092(4)
	D_{s0}^*	scalar	0^+	2317.8(5)	2115(29)
	D_{s1}	axial-vector	1+	2459.5(6)	2512(6)

=()

Studying Thermal Effects

 $R(\tau; T, T_0)$ Divide correlation f'n by model

Can now compare 2 temps by taking ratio-of-ratios:

 $RoR(\tau; T, T_0)$

$$= \frac{G(\tau; T)}{G_{\text{model}}(\tau; T, T_0)}$$

This is a constant as $(\tau \rightarrow \infty)$ if ground state has mass $M(T_0)$

$$=\frac{R(\tau;T,T_0)}{R(\tau;T_0,T_0)}$$

This is a unity (as $\tau \to \infty$) when T and T_0 have same ground state mass $M(T_0)$

No temperature dependence

 $D_{(s)}$ and $D^*_{(s)}$ $T \leq 127$ MeV

 $D_{(s)}$ and $D^*_{(s)}$ 127 $\leq T \leq$ 190 MeV

$$R(\tau; T, T_0) = \frac{G(\tau; T)}{G_{\text{model}}(\tau; T, T_0)}$$

$$RoR(\tau; T, T_0) = \frac{R(\tau; T, T_0)}{R(\tau; T_0, T_0)}$$

• Ratio-of-ratio shows no temperature dependenceup to $T \sim 127$ MeV

• Temperature dependence clearly visible at $T \sim 152$ MeV

• Scalar and axial vector channels have clear T effects (not shown)

PDG	T[MeV] = 47	95	109	127	152	
869.65(5)	1876(4)	1878(4)	1876(4)	1869(5)	1856(6)	18
010.26(5)	2001(4)	2004(4)	2005(5)	1986(11)	1958(9)	18
968.34(7)	1972(5)	1966(4)	1965(4)	1963(4)	1948(5)	19
112.2(4)	2092(4)	2091(5)	2092(5)	2086(5)	2060(6)	198

- FASTSUM approach
- Open Charm Mesons
- Charm Baryons
- Interguark potential in bottomonium •
- Spectral Functions

Overview

Parity in the Baryonic Spectrum Ryan Bignell

No parity doubling in (T=0) Nature:

+ve parity: $m_{+} = m_{N} = 0.939 \text{ GeV}$ -ve parity: $m_{-} = m_{N^*} = 1.535 \text{ GeV}$

What happens as T increases? **Question:**

Lattice: Parity operation: $PO(\tau, \vec{x})P^{-1} \stackrel{\mathbf{X}}{=} \gamma_{4}O(\tau, +\vec{x})$

Use this to construct correlation f'ns

Charge conjugation $G_{+}(\tau) = -G_{\mp}(1/T + \tau)$ (zero density):

 $G_+(\tau) = -G_-(\tau)$ **Chiral symmetry:**

PRD 92 (2015) 014503 [arXiv:1502.03603] JHEP 06 (2017) 034 [arXiv:1703.09246] Phys.Rev. D99 (2019) no.7, 074503 [arXiv:1812.07393] Eur.Phys.J.A 60 (2024) 3, 59 [arXiv: 2308.12207]

Results — "Reconstructed" Correlators

$$G(\tau;T) = \int_{-\infty}^{\infty} \frac{d\omega}{2\pi} K_F(\tau,\omega;T)\rho(\omega) \quad \text{where}$$

Following: H. T. Ding et al, Phys. Rev. D 86 (2012) 014509, [arXiv:1204.4945]

we write
$$1 + e^{-\omega m N_{\tau}} = (1 + e^{-\omega N_{\tau}}) \sum_{n=0}^{m-1} (-1)^{m-1} (-1)^{m-1} \sum_{n=0}^{m-1} (-1)^{m-1} \sum_{n=0}^{$$

$$K_F(\tau,\omega;1/N_{\tau}) = \frac{e^{-\omega\tau}}{1+e^{-\omega N_{\tau}}} = \sum_{n=0}^{m-1} (-1)^n \frac{e^{-\omega(\tau+nN_{\tau})}}{1+e^{-\omega mN_{\tau}}} = \sum_{n=0}^{m-1} (-1)^n K_F(\tau+nN_{\tau},\omega;1/(mN_{\tau}))$$

Suppose $\rho(\omega)$ was indept of *T* :

$$G_{\text{rec}}(\tau; 1/N_{\tau}; 1/N_{0}) = \sum_{n=0}^{m-1} (-1)^{n} G(\tau + nN_{\tau}; 1/N_{0})$$

re the *fermonic* kernel is: $K_F(\tau, \omega; T) = \frac{e^{-\omega T}}{1 + e^{-\omega/T}}$

 $(-1)^n e^{-n\omega N_{\tau}}$ where $N_0 = m N_{\tau}$ and *m* is odd

Results - "Reconstructed" ratio: G_{rec}/G $\Sigma_c(udc)$

+ve parity sector less thermally sensitive than -ve parity

-ve parity

Parity doubling in the correlators

$$R(\tau) = \frac{G_{+}(\tau) - G_{+}(1/T - \tau)}{G_{+}(\tau) + G_{+}(1/T - \tau)}$$

Parity doubling: $G_{+} = G_{-} \rightarrow R(\tau) \sim 0$ Parity max broken: $G_{+} \gg G_{-} \rightarrow R(\tau) \sim 1$

$$R = \frac{\sum_{\tau} R(\tau) / \sigma^2(\tau)}{\sum_{\tau} 1 / \sigma^2(\tau)}$$

- FASTSUM approach
- Open Charm Mesons
- Charm Baryons
- Interquark potential in bottomonium •
- Spectral Functions

Overview

Interguark Potential in a Meson HAL-QCD Method

Correlation F'n Considered, $C(\tau; r)$:

Schrödinger Equation:

$$H|\psi\rangle = E|\psi\rangle$$

$$\begin{pmatrix} -\frac{\nabla^2}{2\mu} + V(r) \end{pmatrix} \psi(r) = E \psi(r)$$
$$\begin{pmatrix} -\frac{\nabla^2}{2\mu} + V(r) \end{pmatrix} C(\tau; r) = E C(\tau; r)$$
$$\begin{pmatrix} \mathbf{Output} & \mathbf{Input} \end{pmatrix}$$

Linear Regression Method Tim Burns $\left(-\frac{\nabla^2}{2\mu} + V(r)\right)C(\tau;r) = E C(\tau;r) - \frac{1}{2\mu}$

$$\rightarrow \qquad \frac{\partial C(\vec{r},t)}{C(\vec{r},t)} = \frac{1}{2\mu} \frac{\nabla_r^2 C(\vec{r},t)}{C(\vec{r},t)} - V(\vec{r})$$

i.e. it's linear: $y(\vec{r}, t) = m(r) x(\vec{r}, t) + c(r)$

T = 235 MeV

Effective Mass & Potential in (NRQCD) Bottomonium Tom Spriggs

 $\frac{\partial_t C(\vec{r},t)}{C(\vec{r},t)} = \frac{1}{2\mu}$

 $\nabla_r^2 C(\vec{r},t)$ $V(\vec{r})$ $C(\vec{r},t)$

Time window: 12-17 $[a_r]$

- FASTSUM approach
- Open Charm Mesons
- Charm Baryons
- Interguark potential in bottomonium \bullet
- **Spectral Functions** •

Overview

Studying Thermal Effects via Spectral Functions

Correlation Function's Spectral Representation:

$$G(\tau; T) = \int_{0}^{\infty} \frac{d\omega}{2\pi} K(\tau, \omega; T) \rho(\omega; T)$$

$$F(\tau, \omega; T) \rho(\omega; T)$$

Many Approaches to Extract Spectral Information

- 1. Exponential (Conventional δ f'ns)
- 2. Gaussian Ground State (+ δ f'n excited)
- 3. Moments of Correlation F'ns
- Maximum Entropy Method
 BR Method
- 6. Kernel Ridge Regression
- 7. Backus Gilbert Ben Page
 8. HLT Antonio Smecca
 9. HMR

- Maximum Likelihood
- Direct Method "no" fit
- **Bayesian Approaches**
- Machine Learning
- from Geophysics

Summary

FASTSUM approach

• anisotropic

Open Charm Mesons

- $D_{(s)}$ and $D^*_{(s)}$ have no T dependency below 127 MeV

Charm Baryons

- +ve parity less T dependent than -ve
- Signs of approx parity doubling

Interguark potential in bottomonium

• Thermal effects seen

Spectral Functions

• Work in progress!

• Scalar and axial vector channels have strong thermal effects

Back-Up Slide

Generation 2L

$a_{ au}$ [am]	a_{τ}^{-1} [GeV]	$\xi = a_s/a_\tau$	a_s [fm]	$m_{\pi} \; [{ m MeV}]$	$T^{\bar{\psi}\psi}_{\rm pc}$ [MeV]
32.46(7)	6.079(13)	3.453(6)	0.1121(3)	239(1)	167(2)(1)

Generation 2L, $32^3 \times N_{\tau}$										
$N_{ au}$	128	64	56	48	40	36	32	28	24	20
$T \; [MeV]$	47	95	109	127	152	169	190	217	253	304
$N_{ m cfg}$	1024	1041	1042	1123	1102	1119	1090	1031	1016	1030

 $a^{-1} = 6.079(13)$ GeV from HadSpec calculation of Ω baryon,

D. J. Wilson, et al., Phys. Rev. Lett. 123 (2019)

T_c ~ 167 MeV