Unraveling the partonic flow in small systems with an improved multi-phase transport model

Speaker: Xiang-Pan Duan Collaborators: Wen-Ya Wu, You Zhou, and Guo-Liang Ma

42nd International Conference on High Energy Physics July 18, 2024, Prague, Czech Republic

Outline Outline

Introduction

- \checkmark Anisotropic flow
- \checkmark *p*_T-differential elliptic flow and NCQ scaling

Hadronization mechanisms

- \checkmark A multi-phase transport (AMPT) model with a simple quark coalescence
- \checkmark A modified AMPT model with precise quark coalescence and string fragmentation

Methods and results

- \checkmark Two-particle correlation and nonflow subtraction in modified AMPT
- \checkmark *p*_T-differential elliptic flow results in **p** + **Pb** collisions in modified AMPT

Summary

Anisotropic flow

 \triangleright Relativistic heavy-ion collisions: initial state, pre-equilibrium, QGP and hydrodynamic expansion, hadronization, hadronic phase and freeze-out

A. M. Poskanzer and S. A. Voloshin, Phys. Rev. C 58, 1671 (1998)

p_T -differential elliptic flow

- \triangleright *p*_T-differential elliptic flow in p + Pb collisions
	- Low p_T : mass ordering effect
	- \checkmark Intermediate p_T : baryon-meson grouping/splitting effect
- Hydro-Coal-Frag (HCF) vs. AMPT:
	- \checkmark HCF: hydrodynamics + coalescence + fragmentation (without non-flow contamination, inappropriate in small collision systems)
	- AMPT: parton cascade $+$ **simple coalescence** (close to the reality with a large non-flow contributions)

Broken of number of constituent quarks (NCQ) scaling

PHENIX Collaboration, Phys. Rev. Lett. 98, 162301 (2007) ALICE Collaboration, JHEP 06 (2015) 190

\triangleright Broken of NCQ scaling

- Baryon-meson grouping doesn't follow perfect NCQ scaling 0.15 $\frac{0.15}{\frac{8}{5}}$ $\frac{8}{5}$ $\frac{1}{5}$ $\frac{1}{2}$ $\frac{1}{2}$
- V Similar broken patterns have been observed in both Pb + Pb
and p + Pb collisions
 $\begin{array}{ccc}\n\downarrow & \text{bydro-Coal-Frag} \\
\downarrow & \text{and } \\
\downarrow & \text{by dro} \\
\downarrow & \text{bydro} \\
\downarrow &$ and $p + Pb$ collisions
- \checkmark *v*₂(p_T) is not only dominated by the quark coalescence \checkmark 0.05
- **Baryon-meson grouping effect is the signature of partonic collectivity in small collision systems**
- Experimental data requires theory explanation

5

AMPT model

- \triangleright AMPT model includes non-equilibrium initial conditions
- ZPC model only includes **two-body elastic scattering**

$$
\sigma_{gg} \approx \frac{9\pi\alpha_s^2}{2\mu^2}
$$

A simple quark coalescence mechanism is used in AMPT model

Modified AMPT model

- **A simple quark coalescence mechanism (**in the AMPT model with string melting)
	- Only considering the smallest distance in coordinate space during quark coalescence
- **A new hadronization mechanism (**new quark coalescence + string fragmentation)
	- Considering the relative distance in phase spaces (coordinate and momentum) during quark coalescence

New quark coalescence and string fragmentation

New quark coalescence: the momentum distributions of mesons and baryons are defined as

$$
\frac{dN_{\rm M}}{d^3 \mathbf{P}_{\rm M}} = g_{\rm M} \int d^3 \mathbf{x}_1 d^3 \mathbf{p}_1 d^3 \mathbf{x}_2 d^3 \mathbf{p}_2 f_{\rm q} (\mathbf{x}_1, \mathbf{p}_1) f_{\bar{\rm q}} (\mathbf{x}_2, \mathbf{p}_2) \times W_{\rm M} (\mathbf{y}, \mathbf{k}) \delta^{(3)} (\mathbf{P}_{\rm M} - \mathbf{p}_1 - \mathbf{p}_2), \n\frac{dN_{\rm B}}{d^3 \mathbf{P}_{\rm B}} = g_{\rm B} \int d^3 \mathbf{x}_1 d^3 \mathbf{p}_1 d^3 \mathbf{x}_2 d^3 \mathbf{p}_2 d^3 \mathbf{x}_3 d^3 \mathbf{p}_3 f_{\rm q_1} (\mathbf{x}_1, \mathbf{p}_1) f_{\rm q_2} (\mathbf{x}_2, \mathbf{p}_2) f_{\rm q_3} (\mathbf{x}_3, \mathbf{p}_3) \times W_{\rm B} (\mathbf{y}_1, \mathbf{k}_1; \mathbf{y}_2, \mathbf{k}_2) \delta^{(3)} (\mathbf{P}_{\rm B} - \mathbf{p}_1 - \mathbf{p}_2 - \mathbf{p}_3),
$$

 \checkmark Wigner function of a meson in the n-th excited state is given by

$$
{\rm W}_{{\rm M},\rm n}({\bf y},{\bf k})=\tfrac{v^{\rm n}}{\rm n!}{\rm e}^{-v}\;,\;v=\tfrac{1}{2}\left(\tfrac{{\bf y}^2}{\sigma_{\rm M}^2}+{\bf k}^2\sigma_{\rm M}^2\right)
$$

 \checkmark Wigner function of a baryon in the n₁-th and n₂-th excited state is given by

$$
\mathrm{W}_{\mathrm{B},\mathrm{n}_1,\mathrm{n}_2}(\mathbf{y}_1,\mathbf{k}_1;\mathbf{y}_2,\mathbf{k}_2) = \tfrac{v_1^{n_1}}{n_1!}e^{-v_1}\cdot\tfrac{v_2^{n_2}}{n_2!}e^{-v_2},\ v_{\mathrm{i}} = \tfrac{1}{2}\left(\tfrac{\mathbf{y}_\mathrm{i}^2}{\sigma_\mathrm{Bi}^2} + \mathbf{k}_\mathrm{i}^2\sigma_\mathrm{Bi}^2\right)
$$

 String fragmentation: the new strings are formed by quark and anti-quark pairs according to the smallest distance in η - ϕ plane, then fragment into hadrons by the "hadron standalone mode" of PYTHIA8

$$
\Delta R_{\rm min} = \sqrt{\Delta \eta^2 + \Delta \phi^2}
$$

p_T spectra of identified particles

- Figure 1. These two models reproduce the p_T spectra of π^{\pm} and K^{\pm} in p + Pb collisions
- \triangleright The modified AMPT model provides more soft $p(\bar{p})$ than default AMPT model
- \triangleright The modified AMPT model gives a more dilute structure before hadron scattering in $p + Pb$ collisions

Two-particle correlation and non-flow

- \triangleright Two-particle correlation method is applied in 1.7 < \triangle η < 4.8
modified $\triangle MDT$ model in $n + Dh$ collisions 1.00 < p_ < 1.50 (GeV/c) modified AMPT model in $p + Pb$ collisions
	- Correlation function ^C(∆*η*, ∆*φ*) shows double ridge structure
	- structure

	Eong-range correlation is established in modified

	∴885 6.85

	5.75 6.85 AMPT model
	- Centrality is determined by "forward multiplicity" (2.8 < *η* < 5.1, same as Nucl. Sci. Tech. 35 (2024) 32)

Two-particle correlation and non-flow

\triangleright Non-flow treatment

- Long-range correlation + template fit
- \checkmark The modified AMPT model has more non-flow contribution than the hydrodynamics model
- \checkmark Source of non-flow in modified AMPT model is not yet clear

p_T -differential elliptic flow

- Results of identified particles v_2 in $p + Pb$ collisions with modified AMPT model
	- **Baryon-meson splitting effect is enhanced** via the precise quark coalescence mechanism
	- **Failed to reproduce grouping effect** in $p + Pb$ collisions with precise quark coalescence —> **The diluted density** of the evolution systems in transport models could be the reason

Summary

- \triangleright The bayron-meson grouping/splitting effect can help to probe the partonic flow;
- \triangleright NCQ scaling is broken;
- \triangleright Modified AMPT model enhances the baryon-meson splitting, but not reproduces the grouping effect;
- **Dense partonic matter** might be necessary in small collision systems;
- \triangleright Outlook —> Increase statistics; flatten the gap between default/modified AMPT model.

Elliptic flow in Pb + Pb collisions

- \triangleright Elliptic flow in Pb + Pb collisions with AMPT model?
	- \checkmark A. Bzdak and G.-L. Ma, Phys. Rev. Lett. 113, 252301 (2014)
	- \checkmark N. Mallick, S. Tripathy, and R. Sahoo, Eur. Phys. J. C 82, 524 (2022)
	- \checkmark L. Zheng et al., Eur. Phys. J. A 53, 124 (2017)

Multiplicity in $p + Pb$ collisions

Ultra-long-range correlation

Non-flow in modified AMPT model

Broken of NCQ scaling

