
• MC simulated pp collisions = Pythia dijet events
• Full ATLAS detector simulation = Geant4
• Jet constituents = Particle Flow Objects (PFO)

• Force the ML tagger to not be reliant on jet       = train with flat       spectrum
• Flat       spectrum – separate for quark and gluons
• Allows physical analyses to use in both, high       and low       region
• 10M jets for training
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Quark / Gluon Jet Tagging
Goal  = distinguish quark/gluon jet origin based on jet properties
Our approach:
• Modern Machine Learning approach = Transformers
• Jet constituent level information
• Full ATLAS detector simulation

So far, q/g taggers in ATLAS use jet level (or high-level) variables:
• Cut-based, using just the number of tracks asociated to a jet
• BDT, using 5 high-level variables
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Constituent level
o Variables created from constituents 4-momenta for each constituent

+ Interaction variables
o Variables created for each pair of constituents

DeParT
• ParT enhancement

ParT
• Transformer

ParticleNet (P.Net)
• Graph Network

PFN
• Deep Sets

Linear variables
o Allow construction of IRC safe model

EFN
• IRC safe

Constituent Variables
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Constituent Interaction Variables
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Linear Constituent Variables
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Highlevel
o Variables describing the jet as whole

Fully Connected (FC)
• MLP 

Reduced Fully Connected (FC red.)
• Closest to the previous BDT tagger

• Calculated for each pair of constituents
• Motivated by parton shower
• One variable is a N-by-N matrix, where N is the number of constituents
• The figures below show average value of            in the training dataset
• For quarks and gluon separately and difference between them
• Constituents are sorted by 

Dynamically enhanced Particle Transformer 

U

• Enhancement of ParT
• Additions from DeiT III 

(arxiv:1810.05165) allow easier and 
more stable training of 
deeper models
• Stochastic depth
• Layer scale

• Gated FFN allows easier 
information flow through the 
network

• Talking Heads
• More communication 

between heads 
• Share constituent variables

Model AUC "�1
g @"q = 0.5 # Params [106] Inference Time [ms] GPU Memory [MB]

DeParT 0.8489 15.4242 2.62 266.51 1684
ParT 0.8479 15.2457 2.62 233.84 1730
ParticleNet 0.8476 15.4402 2.59 768.74 5410
PFN 0.8406 14.2387 2.64 136.93 393
FC 0.8280 13.5199 2.63 65.53 76
FC reduced 0.8038 10.3639 2.63 84.84 47
EFN 0.7761 7.7222 2.60 101.53 337

• Total number of parameters in all models is fixed 
to 2.6M

• Constituent based models outperform high-level 
ones

• DeParT obtains best AUC
• ParticleNet
• Best gluon rejection at 0.5 quark efficiency
• Time and memory consuming

• Transformer models perform the best
• EFN underperforms due to IRC limitations
• Performance grows with
• At low       the performance is more similar 

Monte Carlo Dependence
• How sensitive are the taggers to the differences in physical modelling?
• Models trained on Pythia are evaluated on alternative dijet MC

• DeParT (left) achieves better nominal 
performance but also has bigger difference 
between MCs than EFN (right)

• Only PhPy has similar performance to Py à ME 
has smaller effect

• Parton shower and hadronization modelling
have big effect

• Tradeoff: performance vs MC independence

• Evaluate the models performance = test dataset with physical       spectrum
• 1M jets for evaluation
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higher = better


