Constituent based Quark / Gluon Jet lagging

* * * Charles University

SAMUEL JANKOVYCH for the ATLAS Collaboration

Quark / Gluon Jet Tagging

= distinguish quark/gluon jet origin based on jet properties Goal Our approach:

- Modern Machine Learning approach = **Transformers**
- Jet constituent level information
- Full **ATLAS** detector simulation

So far, q/g taggers in ATLAS use jet level (or high-level) variables:

- Cut-based, using just the number of tracks asociated to a jet
- BDT, using 5 high-level variables $(p_T, n_{trk}, W_{trk}, C_1^{\beta=0.2})$

Data

- MC simulated pp collisions = **Pythia dijet events**
- Full **ATLAS** detector simulation = Geant4
- **Jet constituents** = Particle Flow Objects (PFO)
- Force the ML tagger to not be reliant on jet $p_{\rm T}$ = train with flat $p_{\rm T}$ spectrum
- Flat p_{T} spectrum separate for quark and gluons
- Allows physical analyses to use in both, high $p_{\rm T}$ and low $p_{\rm T}$ region
- **10M** jets for training

 p_{T} sliced unweighted Pythia spectrum

flattened spectrum

1M jets for evaluation

Deep Learning Model Bestiary

Constituent level

• Variables created from constituents 4-momenta for each constituent

 $\Delta \eta = \eta - \eta^{\rm jet}$

 $\Delta \phi = \phi - \phi^{\rm jet}$

 $\log p_{\rm T}$

 $\log E$

 $\log \frac{E}{E^{je}}$

m

Constituent Variables

 $\Delta R = \sqrt{\Delta \eta^2 + \Delta \phi^2}$

- + Interaction variables
- Variables created for each pair of constituents

DeParT

ParT enhancement \bullet

ParT arXiv:2202.03772

• Transformer

ParticleNet (P.Net) arxiv:1902.08570

Constituent Interaction Variables

- Calculated for each **pair of constituents**
- Motivated by parton shower
- One variable is a N-by-N matrix, where N is the number of constituents
- The figures below show average value of $\log \Delta$ in the training dataset
- For quarks and gluon separately and difference between them

- Graph Network **PFN** arxiv:1810.05165
 - Deep Sets •

Linear variables

• Allow construction of IRC safe model **EFN** arxiv:1810.05165

• IRC safe

Highlevel

• Variables describing the jet as whole **Fully Connected** (FC)

• MLP

Reduced Fully Connected (FC red.)

• Closest to the previous BDT tagger

Linear Constituent Variables	
$\Delta \eta = \eta - \eta^{\rm jet}$	
$\Delta \phi = \phi - \phi^{\text{jet}}$	
$\Delta R = \sqrt{\Delta \eta^2 + \Delta \phi^2}$	
$rac{p_{\mathrm{T}}}{p_{\mathrm{T}}^{\mathrm{jet}}}$	

High-level Jet Variable

jet 4-momentum total number of PFOs number of charged PFOs with $p_{\rm T} > 1000 {\rm MeV}$ number of charged PFOs with $p_{\rm T} > 500 {\rm MeV}$ jet width computed from charged PFOs with $p_{\rm T} > 1 {\rm GeV}$ a fraction of energy of a jet deposited in EM calo charged fraction of a jet

 $p_{\rm T}, \eta, N_{\rm PFO}, W_{\rm PFO}, C_1^{\beta=0.2}$

Nominal Results

Model	AUC	$\varepsilon_g^{-1} @ \varepsilon_q = 0.5$	$\#$ Params $[10^6]$	Inference Time [ms]	GPU Memory [MB]	10 ³ [—— DeParT
DeParT	0.8489	15.4242	2.62	266.51	1684	13 TeV, Pythia8	ParT
ParT	0.8479	15.2457	2.62	233.84	1730	anti- $k_{\rm T}$, $R = 0.4$ PFlow jets	· P.Net
ParticleNet	0.8476	15.4402	2.59	768.74	5410	10	······ PFN
PFN	0.8406	14.2387	2.64	136.93	393		FC
FC	0.8280	13.5199	2.63	65.53	76	and the second sec	FC red.
FC reduced	0.8038	10.3639	2.63	84.84	47	10 ¹	
m EFN	0.7761	7.7222	2.60	101.53	337		A COLORADO
						-	

Total number of parameters in all models is fixed to 2.6M

Dynamically enhanced Particle Transformer

- Enhancement of ParT
- Additions from DeiT III (arxiv:1810.05165) allow easier and more stable training of deeper models
- Stochastic depth
- Layer scale
- **Gated FFN** allows easier information flow through the network
- **Talking Heads**
 - More communication between heads
 - Share constituent variables

Monte Carlo Dependence

How sensitive are the taggers to the differences in physical modelling? Models trained on Pythia are evaluated on alternative dijet MC

- Constituent based models outperform high-level ones
- **DeParT** obtains **best** AUC
- ParticleNet \bullet
 - Best gluon rejection at 0.5 quark efficiency
 - Time and memory consuming
- **Transformer** models perform **the best**
- EFN underperforms due to IRC limitations
- Performance grows with $p_{\rm T}$
- At low $p_{\rm T}$ the performance is more similar

ATLAS Simulation Prelimina 13 TeV, Pythia8, 50% WP anti- k_{T} , R = 0.4 PFlow jets higher = better *р*т [TeV]

SCAN for more!

samuel.jankovych@cern.ch

