Measurements of single and double D⁰ meson production in pp collisions at √*s* **= 13.6 TeV with ALICE**

The distributions of the variables for prompt and non-prompt D^0 mesons were taken from an ideal MC, and those for the background were obtained from sidebands of the data invariant-mass distribution. To separate between prompt and non-prompt candidates accepted by the model, we used a data-driven approach called **cut-variation:**

Define a **set of cuts on the non-prompt BDT score** to get different prompt and 1. non-prompt D^0 contributions. For each cut, we can define an equation of the type:

 $(Acc \times \epsilon)$ ^{prompt} \cdot $N_{\text{prompt}} + (Acc \times \epsilon)$ ^{non-prompt} \cdot $N_{\text{non-prompt}} = Y_i$

 \overline{a} where Y is the raw-yield, and $(Acc \times \varepsilon)$ is the acceptance multiplied by the efficiency.

2. From the full set of cuts, we obtain a system of equations that can be solved iteratively by **minimising the χ².**

pseudorapidity region $|\eta|$ < 0.9.

where N is the raw yield, which can be obtained via a 2D invariant mass fit; $\mathcal L$ is the integrated luminosity; (Acc x ε) is the acceptance multiplied by the efficiency, calculated using MC simulations; and *BR_{A, B}* is the branching ratio of the decays from which particles A and B are reconstructed, respectively.

ALICE Performance pp, \sqrt{s} = 13.6 TeV

 $D^0 \rightarrow K^-\pi^+$ and charge conj $D^0\overline{D}^0 + \overline{D}^0D^0$ pairs $1 < p_{\rm T} < 50 \text{ GeV}/c$

distinguish DPS from single parton scattering (SPS), we can look at different types of D^0 meson pairs:

For the double D^0 production case, to

- **Opposite-sign pairs**, like $\overline{D}^0 D^0$, will be primarily produced by SPS.
- **Like-sign pairs**, such as D^oD^o, will mostly come from DPS.
- **Run 2 and Run 3** results are **compatible** with each other.
- **PYTHIA-based models tend to slightly overestimate the data, independently of the** tune employed.
- **EPOS 4** tends to underestimate the data.
- In Run 3, we are **dominated by systematic uncertainties**, which are being reduced in view of the results publication.
- A higher granularity, especially at low p , is achieved thanks to access to higher statistics. T^{T}
- The non–prompt fraction at **0 < p_{_} < 1 GeV/c** is successfully measured.

We can study the double production of $D⁰$ mesons to investigate **double parton scattering (DPS)** [4]. In general, we measure the DPS cross section for the production of particles A and B as:

The image shows the 2D invariant-mass fit of opposite-sign pairs $(D^0\overline{D}^0 + D^0\overline{D}^0)$, which will be used to extract the SPS raw yield and will be compared with the DPS one.

The D⁰ non-prompt fraction obtained with Run 3 data (in **black**), taken at = 13.6 TeV, *√s* is compared with the results from Run 2 (in **red**), taken at = 13 TeV, and several *√s* theoretical models:

We measured the D^o non-prompt fraction in pp collisions using Run 3 data from ALICE. This measurement can be used to **test pQCD** calculations in the beauty sector. It was already performed in Run 2 [1], but in Run 3 we can:

To perform the model training, we used **variables that exploit the differences in the topology and the particle identification (PID)** between our classes, in particular:

To select D^o mesons, we trained a set of Boosted Decision Trees (BDTs) using candidates with 0 < $p_{\!+}$ < 24 GeV/c with **three different classes**: prompt D^o, non–prompt D^o and combinatorial background. T

- **Raw-yield extraction:** between 4% and 7%.
- **Data vs MC discrepancies for topological** distributions: around 7% in all p ranges.
- **ML selections:** largest uncertainty at high p , up to 15%. At low p , its values are around 5%. \overline{T} $\overline{\mathrm{T}}$
- **weighting:** around 2% in all ranges. *p* **T** T
- The **red** and **blue** templates contain the corrected prompt and non-prompt yields, respectively.
- The **green line** represents the result of fitting the sum of

3. Once we have the number of prompt $\,(\, N_{\rm p})$ and non–prompt ($\, N_{\rm np}$) candidates, **extract the fraction** per cut as

$$
f_{\text{non-prompt}} = \frac{(Acc \times \epsilon)^{\text{non-prompt}} \cdot N_{\text{non-prompt}}}{(Acc \times \epsilon)^{\text{non-prompt}} \cdot N_{\text{non-prompt}} + (Acc \times \epsilon)^{\text{prompt}} \cdot N_{\text{prompt}}}
$$

the two corrected yields to the data.

The **black points** represent the measured raw yields.

5. Results and outlook

$$
\sigma_{\text{DPS}}^{AB} = \frac{N}{\mathcal{L} \times (\text{Acc} \times \epsilon) \times BR_{\text{A}} \times BR_{\text{B}}},
$$

Solving the system of equations, we get:

Systematic uncertainties considered

Andrea Tavira García, on behalf of the ALICE collaboration

Laboratoire
de Physique
des 2 infinis **Irène Joliot-Curie**

ICHEP
2024

ICHEP 2024, Prague, Czech Republic

1. Introduction

- **Improve the precision** with respect to Run 2, thanks to much larger data samples.
- Get **more granular results**, even down to $p = 0$.
- Provide tighter constraints for **distinguishing different hadronisation implementations in models** (EPOS [2], PYTHIA [3] with different tunes). **T**
- We can also measure double D^o production in Run 3 to investigate and **distinguish single and double parton scattering** better**.**

[1] **ALICE** Collaboration, *J. High Energ. Phys. 2023, 92 (2023)*.

[2] T. Sjöstrand *et al*., *Comput. Phys. Commun.* 191 (2015) 159–177.

Related literature

[3] K. Werner, *Phys.Rev.C 108 (2023) 6, 064903.* [4] **LHCb** Collaboration, *J. High Energ. Phys. 2012, 141 (2012)*.

4. Analysis

We started by selecting a working point that maximised the significance of the signal by applying some cuts to the background BDT score. Then, we defined a set of cuts on the non-prompt BDT score, and we **extracted the raw yields and the efficiencies** for each cut:

3. Methodology

6. Perspectives: study of double D⁰ production