

Operation and performance of the upgraded ALICE Inner Tracking System

Jian Liu (University of Liverpool) on behalf of the ALICE Collaboration

42nd International Conference on High Energy Physics 17-24 July 2024, Prague, Czech Republic

ALICE upgrades in Long Shutdown 2 (LS2)

- Major upgrades completed for ALICE during LHC LS2 (2019 - 2021)
- Motivation
 - High-precision measurements of rare probes at low p_{T}
 - Cannot be selected by hardware trigger ٠
 - Need to record large minimum-bias data sample ٠ \rightarrow read out all Pb-Pb interactions up to the maximum collision rate of 50 kHz
- Goal
 - Pb-Pb integrated luminosity > 10 nb⁻¹ (plus pp, pA and O-O data) \rightarrow gain factor 100 in statistics for minimum-bias sample with respect to Run 1 and 2
 - Improved vertex reconstruction and tracking capabilities
- Strategy
 - New ITS, MFT, FIT and TPC readout chambers
 - New readout of most detectors and new trigger system
 - New integrated Online-Offline system (O^2)

New trigger and readout systems

New GEM-based Time Projection Chamber (TPC) readout

New Online/Offline (O²) system

See Guillaume Batigne's talk on July 20th: "Upgrades and Performances of ALICE on muon detection at forward rapidities for LHC Run 3"

ITS2 objectives and layout

- Improve impact parameter resolution by factor ~3 in r ϕ and factor ~5 in z at $p_T = 500 \text{ MeV}/c$
 - Get closer to IP: 39 mm \rightarrow 23 mm
 - Reduce material budget:
 - 1.14% $X_0 \rightarrow 0.36\% X_0$ per layer (inner layers)
 - Reduce pixel size: 50 x 425 μ m² \rightarrow 29 x 27 μ m²
- Improve tracking efficiency and p_{T} resolution at low p_{T}
 - Increase number of track points: $6 \rightarrow 7$ layers
- Fast readout
 - Detector readout rates up to 100 kHz (Pb-Pb, was 1 kHz for ITS1) and 400 kHz (pp)
- 7 cylinders covering ~10 m² area with 12.5 billion pixels
 - Inner Barrel (IB)
 - 3 Inner Layers (48 staves)
 - Outer Barrel (OB)
 - 2 Middle Layers (54 staves) + 2 Outer Layers (90 staves)

ALPIDE: ALICE Plxel DEtector

ALPIDE technology features:

- TowerJazz 180 nm CiS Process
- Deep p-well implementation available → full CMOS
- High resistivity (>1 k Ω ·cm), 25 μ m thick, p-type epi-layer
- Possibility of reverse biasing
- Smaller charge collection diode
 - \rightarrow lower capacitance \rightarrow higher S/N
- Substrate can be thinned down

Sensor specification:

- Pixel pitch: 27 μ m x 29 μ m \rightarrow spatial resolution: ~5 μ m
- Priority Encoder Readout
- Power consumption: 47.5 mW/cm² (IB) and 35 mW/cm² (OB)
- Integration time: < 10 μs
- Fake-hit rate: << 10⁻⁶/pixel/event
- Readout bandwidth up to 1.2 Gbit/s (IB) and 400 Mbit/s (OB)
- Continuous or triggered readout

- Electrical links (~7 m) between the detector and the RU
- FPGA in radiation environment controlling detector, packaging data, electrical optical conversion using Versatile Link controlling powering
 - Needs scrubbing and TMR (Triple Modular Redundancy) to mitigate radiation effects
- Connecting to 22 CRUs hosting on 13 FLPs via the optical Versatile Link for raw data processing
- Detector Control System (DCS) communicates with the detector via CRU and RU
 - Automatic in-run recovery maximizes detector acceptance and data-taking efficiency ICHEP 2024 J. Liu

Data processing and quality control (QC)

Synchronous

- 13 ITS First Level Processors (FLPs)
 - Data aggregation
 - QC: data integrity and detector occupancy

Detector field in first and last page

ICHEP 2024 J. Liu

See Svetlana Kushpil's poster on July 19th: <u>"Data Quality</u> <u>Control of the ALICE Inner Tracking System in the LHC Run 3"</u>

Noisy Pixel Number

Data processing and quality control (QC)

Synchronous

- 340 Event Processing Nodes (EPNs, shared by all ALICE detectors)
 - Synchronous reconstruction and data compression
 - Detector calibration: threshold scan/tuning, noisy pixel masking etc
 - QC: decoding errors, dead-chip maps, clustering and tracking, threshold and noisy pixels

Cluster occupancy : Good Track angular distribution : Good

Internal triggers per Orbit : Good

NClusters : Good

Aggregated QC flags with trending on dedicated QC servers

See Svetlana Kushpil's poster on July 19th: <u>"Data Quality</u> <u>Control of the ALICE Inner Tracking System in the LHC Run 3"</u>

Data processing and quality control (QC)

Ethernet Storage

Asynchronous

Physics reconstruction with QC on the EPNs not used for synchronous and on GRID \rightarrow final Analysis Object Data (AOD)

- QC: cluster occupancy/topology, track distribution and length
- Monte Carlo (MC) simulations anchored to physics runs with ITS dead-chip maps

CRU/FLP

InfiniBand

network

EPN

#clusters vs BC id for clusters with npix > 2

Detector

Control of the ALICE Inner Tracking System in the LHC Run 3"

Coordinates of track vertex

ITS2 in Run 3

٠

- Integrated luminosity so far (pp collisions): ~42 pb⁻¹
- Integrated luminosity for Pb-Pb in 2023 Oct.: ~1.5 nb⁻¹
 - Recorded Minimum Bias sample of ~12 billion collisions, ~40 times larger than Run 1+2
 - ALICE standard interaction rate: 500 kHz (pp) peaking at 47 kHz in Oct. 2023 (Pb-Pb)
 - Instantaneous luminosity: ~10³¹ (pp) 10²⁷ (Pb-Pb) cm⁻²s⁻¹

ICHEP 2024 J. Liu

ITS2 in Run 3

- ITS2 successfully tested up to 4 MHz interaction rate in pp
- 99.6% pixel active in the whole detector
 - 94 chips broken/excluded, 970 k dead pixels and 500 k noisy pixels
- Beam-induced background observed in the first minutes of the stable beams → largely mitigated by prompt LHC adjustment
 → Improved ITS RU firmware to better cope with such events
- Loss of acceptance during run auto-recovered by DCS
- Sporadic data corruption events not affecting overall performance
 - Dominated by SEU induced issues; further consolidations ongoing

ICHEP 2024 J. Liu

Calibration (1/2)

- Main ITS calibrations
 - Threshold tuning
 - Noisy pixel masking
- Threshold & noise re-calibration: ~1/year
- Fast threshold scan (~1% pixels) at each beam dump
- Full threshold scan (100% pixels): ~1/year

- Uniform response across the detector achieved (100 e⁻ target)
- Noise ~5 e⁻ (compatible with production QA measurements)
- Very satisfying threshold stability over time for 24 k chips
 - Minor fluctuations due to supply voltage optimizations
- Radiation effect observed in IB after Pb-Pb runs in 2023
 - Effect compensated with a new tuning in June 2024

ICHEP 2024 J. Liu

Calibration (2/2)

- Possibility to run with static masks already proven during surface commissioning
- OB masking: pixels with 10⁻⁶ hits/event

•

- IB masking: 10⁻² hits/event → almost no masking → prioritization of efficiency over data rate reduction
- Fraction of masked pixels: 0.004%
- Stable noisy pixel map → occasionally noise calibration is sufficient

Extremely quiet detector!

ALI-PERF-575745

Impact parameter resolution

ALICE

- Impact parameter resolution measured with Run 3 pp and Pb–Pb data
 - ITS updated alignment + TPC space-charge distortion calibration
 - ~2x improvement at $p_T = 1 \text{ GeV}/c$ with respect to Run 2

10

Detection of weakly decaying particles

- ITS2 Inner Barrel has the first three layers within 4 cm
 - Direct tracking of charged weak-decaying particles before their decay via strangeness tracking
 - New possibilities of studies: non-prompt cascades, hypernuclei, exotic bound states

Studies on particle identification (PID)

- Hypernuclei and heavy-ionizing particles
 - Measured in Pb-Pb data recorded in 2023 with standard ITS2 setting

- Proof of concept for PID with thin binary readout
 - Dedicated ITS2 runs in pp with interaction rate at ~1kHz
 - 2.2 MHz framing rate on IB \rightarrow oversampling ALPIDE response
 - Front-end tuned for charge-proportional analogue pulse length
 - First dE/dx spectrum observed!

Summary

- ITS2, the first Monolithic Active Pixel Sensor based detector at LHC, was installed in ALICE during the LS2
 - ITS2 is operational since the first day of Run 3
- Excellent performance observed in both pp and Pb-Pb collisions
 - Uniform pixel threshold distribution and extremely low noise; stable over time
 - Significantly improved tracking capabilities, 30 μ m at p_T = 1 GeV/c
- Proof of concept of highly ionising particle identification using cluster size in standard operation as well as dE/dx via time-over-threshold information in special runs
- MAPS is a key element in the upcoming ITS3 and ALICE 3 upgrades

Backup

ITS1 vs ITS2

	ITS1	ITS2			
Technology	Hybrid pixel, strip, drift	MAPS			
No. of layers	6	7			
Radius	39–430 mm	22–395 mm			
Rapidity coverage	$\mid \eta \mid \leq 0.9$	$\mid \eta \mid \leq 1.3$			
Material budget / layer	$1.14\% X_0$	inner barrel: 0.36% X ₀			
		outer barrel: 1.10% X ₀			
Pixel size	$425 \ \mu m \times 50 \ \mu m$	$27 \ \mu m \times 29 \ \mu m$			
Spatial resolution ($r\varphi \times z$)	12 μm × 100 μm	$5 \ \mu m \times 5 \ \mu m$			
Readout	Analogue (drift, strip), Digital (Pixel)	Digital			
Max rate (Pb-Pb)	1 kHz	50 kHz			

ITS2 Barrels

- Hybrid Integrated Circuit (HIC): 9 sensors glued onto Al Flexible Printed Circuit (FPC)
- Wirebonds electrically connect FPC to chips
- Stave: a HIC glued onto cold plate and space frame
- Each sensor is read out individually

Outer Barrel (OB):

- OB HIC:
 - 7x2 sensors (2 rows) glued onto Cu FPC
 - Power delivered via 6 Al cross-cables soldered to the FPC
 - Data and control are transferred through 1 master chip per row
- OB stave:
 - 4x2 HICs (for ML) or 7x2 HICs (for OL) glued onto cold plate and space frame

Layer and Barrel Assembly

Outer Barrel assembly

Detector fully assembled in Dec. 2019

Inner Barrel assembly

On-surface commissioning lab

ICHEP 2024 J. Liu

Installation

OB-Bottom being loaded to mini-frame

OB-Bottom being positioned

IB being installed

IB installed

OB installation completed – mid March 2021 IB installation completed – mid May 2021

DCS and safety system

- DCS
 - User interface (UI) developed in WINCC OA SCADA
 - Logics implemented as a Finite State Machine (FSM)
 - Detector operation and monitoring
 - Control the detector itself and its infrastructure, like RU/PB and cooling system
 - Monitoring > 100 k data points with data archiving
 - Automatic in-run recovery maximizes detector acceptance and data-taking efficiency
- ITS2S
 - Independent safety system
 - Interlocks CAEN power channels based on stave temperatures and cooling plant loop status

Readout unit counters of L0_00

8b1	10b OOT	8b10b tolerated	Bb10b OOT in	Protocol errors	Busy event	8b10b OOT	fa Busy viola	tion BCID n	hismatc Data or	verrun La	ane FIFO ov	Detector timeo	Rate occupancy	Lane FIFO sta	Lane FIFO sto Lane	FIFC
0	0	0		0 0		0	0	0	0	0	0	0	0	14200	14200	
1	0	0		0 0		0	0	0	0	0	0	0	0	14200	14200	
2	0	0		0 0			- דר				0	0	0	14200	14200	
3	0	0		0 0			KU (COU	nter	S	0	0	0	14200	14200	
4	0	0		0 0							0	0	0	14200	14200	
5	0	0		0 0					•		0	0	0	14200	14200	
6	0	0		0 0			moi	nitc	ning	7	0	0	0	14200	14200	
7	0	0		0 0				ince	אייייי	>	0	0	0	14200	14200	
8	0	0		0 (0	0	0	0	0	0	0	0	14200	14200	
Trigger	counter													Trigger ra	ite	
Sent	Echoed	Trigger FI	FC Trigger FI	IFC Trigger FIF	Processed	Gated	Corrected	Orbit	HB	HB reject	Physics	Prepulse	×	HB/TF	HBA/TF	н
4												E F		4		
Calibratio	n SOT	EOT	SOC	EOC	Time frame	Illegal mode	Ignored	FERST	LOL Timebas	Health ch	eck Decoder (erro			TRG read/TF	S
	0	1	1	0	63189	B (15279		9 9		0	0				0

Cluster size

Layer 6

Layer 5

Layer 4

Layer 3

Layer 2

Layer 1

Layer 0

Layer 0

Layer 1

Layer 2

Layer 3

Layer 4

Layer 5

Laver 6

- Cluster size averaged for half layers (pp) ٠
 - Between 3 and 8 pixels depending on n
 - RMS ranging on the same interval ٠
 - Observed to be stable over time
 - Independent of the interaction rate ٠

- Simulation with Pythia 8 + Geant 3 (pp) •
 - Simulated noise: 2x10⁻⁸ hits/event/pix (IB), 3x10⁻⁹ hits/event/pix (OB)
 - Good agreement with data considering approximations
 - Average noise per barrel and not per stave/chip

Limited statistics in MC: ~20 k events

ALI-PERF-528522

Tracking

- Excellent performance in both pp and Pb-Pb runs with the current updated detector alignment
 - Good angular distribution of tracks
 - Time-dependent acceptance maps accurately describe acceptance loss in MC simulations

ITS3

Replacing the 3 innermost layers with new ultra-light, truly cylindrical layers

- Reduced material budget (from 0.36% to 0.07% X₀ per layer) with a very homogenous material distribution by removing water cooling, circuit boards and mechanical support
- Closer to the interaction point (from 23 to 19 mm)

Improved vertexing performance and reduced backgrounds for heavy-flavour signals and for low-mass dielectrons

IB Layer Parameters	Layer 0	Layer 1	Layer 2
Sensor length [mm]		265.992	
Sensitive length [mm]		259.992	
Sensor azimuthal width [mm]	58.692	78.256	97.820
Radial position [mm]	19.0	25.2	31.5
Equatorial gap [mm]		1.0	
Max thickness [µm]		50	

Table 3.3: Design dimensions of the sensor dies and radial position.