ICHEP 2024 | PRAGUE

The search for light dark matter with DAMIC-M

- DAMIC-M goals,
- Skipper CCDs,

- Outlook.

ENRICO FERMI INSTITUTE

Radomir Smida

smida@kicp.uchicago.edu

 Low Background Chamber, Dark matter-electron scattering,

3.

X

European Research Council Established by the European Commission

Dark Matter in CCDs at Modane (DAMIC-M)

DAMIC-M will deploy an array of skipper CCDs and its design goals are

- exposure of 1 kg year,
- single electron resolution $\sigma < 1 \, \mathrm{e}^-$,
- low background O(0.1) dru,
- low dark current $< 0.5 \,\text{e}^{-1}/\text{mm}^{-2}/\text{day}$.

Located at the Modane underground laboratory (LSM) in France

- Prototype takes data since early 2022,
- DAMIC-M installation in early 2025.

Science goals:

R. Smida — The search for light dark matter with DAMIC-M

• Detects both nuclear & electronic recoils,

Explore wide range of DM models, i.e. DM masses starting from 1.2 eV (hidden-sector mediators) to light WIMPs (<10 GeV).

DAMIC-M projected sensitivity

Charge-coupled devices (CCDs)

Semiconductor device made from mono-crystalline Si

- Clean material (but cosmogenically activated ³H, ⁷Be, ²²Na),
- thickness 670 μm,
- high resistivity (>10 k Ω -cm) and fully depleted with the substrate voltage $V_{\rm sub} \ge 40 \, {\rm V}$,
- pixel size $15 \mu m \times 15 \mu m$.

DAMIC-M CCD has ~9M pixels and 3.3 grams

Three-phase vertical and horizontal clocks move charge

Skipper CCD

DAMIC-M CCDs have floating-gate (skipper) amplifiers

R. Smida — The search for light dark matter with DAMIC-M

• Skips = multiple non-destructive charge measurements by moving pixel charge between the summing well and floating gate

H1,2,3 horizontal clocks SG summing well OG output gate DG dump gate RG reset gate V_{ref} reference voltage

Skipper CCD

DAMIC-M CCDs have floating-gate (skipper) amplifiers

electron resolution

Unfortunately, pixel readout time is much longer than in a standard CCD. This is an issue on the surface, because we have almost no events in a low background environment. We can shorten it by summing charge from more pixels (i.e. binning).

R. Smida — The search for light dark matter with DAMIC-M

• Skips = multiple non-destructive charge measurements by moving pixel charge between the summing well and floating gate • The readout noise decreases to $\sigma = \sigma_1 / \sqrt{N_{skip}}$ for N_{skip} and typically $N_{skip} > 200$ is required to achieve good single-

Particles in CCDs

Excellent spatial (x, y) reconstruction due to pixelization

The depth (z) thanks to charge diffusion CCDs are calibrated by atmospheric muons

1. Particle identification

Calibration measurements

Precision measurement of Compton scattering in Si down to $E_{ee} = 23 \text{ eV}$, experiment at UChicago with ²⁴¹Am γ source

Measurement of the nuclear recoil ionization efficiency in Si, experiment at UChicago with low-energy neutrons (<24 keV) from a ¹²⁴Sb-⁹Be photoneutron source, ongoing analysis

R. Smida — The search for light dark matter with DAMIC-M

data comparison to the FEFF prediction in the L-shell energy range.

Distinguishing nuclear recoil signals from electronic recoil background, CCD irradiated with ²⁴¹Am-⁹Be neutron source at UWashington, arxiv:2309.07869, accepted by PRD

ICHEP 2024

DAMIC-M detector at LSM

Modane Underground Laboratory Modane (LSM)

- 1700 m of rock overburden or 4800 m.w.e.,
- muon flux reduced ~10⁶ times to only 5 $\mu/m^2/day$,
- road tunnel, i.e. convenient access.

Detector clean room (class ISO 5) plus clean room for testing and assembly

R. Smida — The search for light dark matter with DAMIC-M

Electronics feedthrough

- 208 science-grade skipper CCDs,
- 4 devices on a Si pitch adapter with a flex cable
- cosmogenic activation ~3 months,
- IR shield around.

DAMIC-M background mitigation steps

CCD cosmogenic activation (no flights, expedite production, storage underground, transport in a container with 16-ton iron shielding) PRD 102, 102006 (2020)

Strict control of exposure to Radon and dust

Ultra-clean CCD flex cables, further away from CCDs **EPJ Tech. Inst. 10, 17 (2023)**

Copper electro-formed and machined underground, cosmogenic activation below 10 days NIM A 828, 22 (2016) AIP Conf. Proc. 1921, 020001 (2018)

Ancient lead shielding

Chemical cleaning NIM A 579, 486 (2007)

Design validation with Geant4 simulations

Expected total background O(0.1) dru.

R. Smida — The search for light dark matter with DAMIC-M

CCDs are not included

ICHEP 2024

Low Background Chamber (LBC)

DAMIC-M prototype commissioned in early 2022

18 cm

Two 6k x 4k pixel CCDs

- CCDs in the copper box are at ~130 K,
- the box provides cooling and shielding (radioactive and IR background),
- cleanest materials are closest to CCD devices,
- pressure <10⁻⁵ mbar.

LBC goals:

- 1. Gain working experience at LSM,
- 2. characterize DAMIC-M components in a low background environment,
- 3. test of other subsystems (electronics, SC, DAQ, data transfer, etc.), 🗸
- 4. science results with small detector.

First Constraints from DAMIC-M on Sub-GeV Dark-Matter Particles Interacting with Electrons

3 (2023) — Published 28 April 2023

World-leading constraints are placed on electron interactions with dark matter in the MeV to GeV range by the first underground operation of a new CCD detector how Abstract

PHYSICAL REVIEW LETTERS 132, 101006 (2024

Search for Daily Modulation of MeV Dark Matter Signals with DAMIC-M

I. Arnquisto,¹ N. Avaloso,² D. Baxtero,^{3,*} X. Bertouo,² N. Castelló-Moro,⁴ A. E. Chavarriao,⁵ J. Cuevas-Zepedao, A. Dastgheibi-Fard[®],⁶ C. De Dominicis[®],⁷ O. Deligny[®],⁸ J. Duarte-Campderros,⁴ E. Estrada,² N. Gadola,⁹ R. Gaïor, T. Hossbach⁰,¹ L. Iddir⁰,⁷ B. J. Kavanagh⁰,⁴ B. Kilminster⁰,⁹ A. Lantero-Barreda⁰,⁴ I. Lawson,¹⁰ S. Lee⁹,⁹ A. Letessier-Selvon,⁷ P. Loaiza,⁸ A. Lopez-Virto,⁴ K. J. McGuire⁵,⁵ P. Mitra⁵,⁵ S. Munagavalasa³, D. Norcini⁵, S. Paulo,³ A. Piers,⁵ P. Privitera^{9,37} P. Robmann⁹, S. Scorza,⁶ M. Settimo^{9,12} R. Smida^{9,3} M. Traina^{9,57} R. Vilar^{9,4} G. Warot,⁶ R. Yajur,³ and J-P. Zopounidis⁰⁷

(DAMIC-M Collaboration)

DM-electron scattering data

Data taken during the commissioning phase

- Resolution 0.2 e⁻ ($N_{skip} = 650$), dark current ~20 e⁻/mm²/day,
- two runs over three months in 2022,
- remote operation.

"Minimum-bias" selection criteria:

- Identify high energy clusters and reject those with >7 e⁻ (negligible contribution to DM signal),
- mask around clusters for charge transfer inefficiency (only 6×10^{-5} of the pixels are excluded),
- reject hot pixels/columns (20% of the pixels are excluded),
- exclude regions with charge traps in the serial register.

Total exposure 85.2 g-days

R. Smida — The search for light dark matter with DAMIC-M

Counts/0.1 e

DM-electron scattering upper limit setting

R. Smida — The search for light dark matter with DAMIC-M

Add dark current to the DM signal

Binned likelihood function fit to the LBC data

Search for daily modulation of MeV DM signals

We have improved at lowest energies corresponding to the 1e⁻ bin

Motivation:

- Scattering in Earth's bulk modifies the DM flux and velocity distribution, resulting in daily modulation of the DM signal.
- In LBC, time-dependent signal vs. independent background strong discriminating power.
- New approach for constraining DM-electron scattering.

LBC result:

- Search in 1e⁻ bin, because bins >1e⁻ are already constrained,
- A subset of the data used in the previous work, the images were taken consecutively every 10 min during 63 days,
- No modulation signal found for periods of 1-48 hr.

zenith \mathbf{V}_{ν} Detector $\mathbf{r}_{\mathrm{det}}$ Earth $\langle \mathbf{v}_{\chi} \rangle$ Atmosphere

LBC daily modulation constraints on DM-e scattering

The daily modulation analysis improves our limits below 3 MeV by up to two orders of magnitude PRL 132, 101006 (2024)

LBC upgrades after **DM**-e papers

- Two DAMIC-M CCD module prototypes were installed, CCDs are 1. from the DAMIC-M pre-production run,
- 2. Lids of the CCD box from copper electro-formed and machined at LSC in Spain,
- Background rates decreased after installing less activated CCDs 3. and copper grown and machined underground at LSC,
- 4. New electronics: two times lower noise, lower dark current thanks to clock shaping and other modifications

Data analysis:

- Studying α rates,
- Coincidences, e.g. $\beta \beta$ for ³²Si and ²¹⁰Pb,
- Low energy clusters,
- Dark current studies, etc.

Technical design publication is forthcoming

Outlook

Happening right now!

- CCDs are being shipped from their underground storage at SNOLAB to the Univ. of Washington,
- (Extremely) busy with preparing for packaging and testing CCDs,
- Radiopure CCD flex cables are being fabricated,
- Testing new electronics,
- Issuing purchase orders for commercial and electro-formed copper, pitch adapters, etc.,
- Plans for new clean room at LSM,
- We continue to take new data with the LBC at LSM,
- ongoing data analysis (the nuclear recoil ionization efficiency and the LBC)

DAMIC-M will be online in 2025 and will push the search for dark matter into new, unexplored regions that were previously non-accessible due to detector limitations. Skipper CCDs have the potential for new discovery.

Prototyping

New test chambers

FE board

Dark Matter in CCDs in Modane (DAMIC-M)

