First results from testing
SuperCDMS SNOLAB
detectors at CUTE

Aditi Pradeep
University of British Columbia / TRIUMF
On behalf of the SuperCDMS collaboration

UBC

e

—
—iv'vi-

& TRIUMF




The SuperCDMS SNOLAB experiment

« 2ndgeneration dark matter experiment at SNOLAB
* Cryogenic detectors which measure phonons and ionization signals
* Operated close to absolute zero (~ 10 mK)

* Payload in the form of towers with 6 detectors each (4 towers = 24 detectors)
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The SuperCDMS SNOLAB experiment

* Two kinds of detection technology:
* Bolometric detection of phonons with Transition Edge Sensors

* lonization readout with High Electron Mobility Transistors

* Detector substrates: Ge and Si crystal v <
« Two detector types: ‘3"; 44 AV
* iZIPs: Phonon + charge readout (NR/ER discrimination) N

* HV: Amplified phonon only readout (Lower threshold)
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More info in next talk by Emanuele Michielin...
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Why should we test and characterize detectors?

Early physics

- Detector calibration
- Noise characterization
- Background estimation

- Potential early dark matter searches

Logistics

Establishing functionality

Optimizing operational logistics

Assessing detector performance

Identifying aspects that require improvement

Personnel training



Preliminary tests at SLAC

- Ground level testing with minimal shielding

. D  circuit diaaram
- Four runs roughly spanning a week each etector circuit diagra

- One run per tower P

- Established basic operability of all devices ﬁﬂp

- Measured preliminary detector properties (R, %HS i{cL
R, optimal I, etc.) é R

- Tested high voltage operability up to 100V =

ADC counts
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Limitation of on-surface testing e R
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- High trigger rates of 35 Hz/ detector 35000
32500
- Increased cosmogenic exposure O
- Veryshort testing times 48000 ﬂ
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A well-shielded, low background site that

supports SuperCDMS-style tower geometry,
Where do we go?

preferably close to the SuperCDMS site...
SNOLAB...




CUTE facility overview

- Cryogenic Underground Test facility at SNOLAB
- Checks all the boxes:
Several layers of shielding (ambient
background of few events/ keV/ kg-day)
Natural rock overburden (~ 2 km)
Facility shielding ( water, lead and
HDPE)
Adjacent to SuperCDMS
Made to accommodate SuperCDMS

tower geometry
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Drywell with low activity Pb shield



SuperCDMS tower testing at CUTE
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Key outcomes: Ge calibration

Neutron activation produces peaks at known

energies in the spectrum

Ge+n—"' Ge

excellent energy resolution

H Peak / Shell ‘ Peak position | Probability

K 10.37 keV 87.6%
L 1.3 keV 10.5%
M 0.16 keV 1.78%

Both low and high energy calibration possible
High energy calibration with external source

Advanced reconstruction algorithms promise
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Key outcomes: Si calibration

Compton steps at the lowest energies corresponding to

atomic energy levels of the Si atom

Material K step L1 step L2 step
Si 1.839 keV 0.150 keV 0.099 keV

- Observation of K step at 0 V with a few days of data

- Observation of Cu X-ray peak (8.1 keV) from the
surrounding detector housing at 0 V

- Potential hints of features consistent with L1 and L2

steps with a few weeks of data at 90 V
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Compton scattering of
photons from K shell
electrons in the Si atom
is expected to produce a
visible step in the energy
spectrum at 1.8 keV. X-
ray fluorescence of the
Cu housing surrounding
the detector is expected
to produce a peak at 8.1
keV as a second feature
in the spectrum
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Key outcomes: Amplification studies

— Expected trend of peak positions
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saturation kicks in.
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Key outcomes: New tools and methods

Reconstruction techniques
- Saturation reconstruction
- Position reconstruction
- Detector volume fiducialization
- Noise reduction systems
- Detector neutralization schemes
- Electric field distortion from adjacent detectors



Summary

- SuperCDMS has successfully tested all four towers at SLAC

- SLAC tower testing was limited by high trigger rates and desire to minimize cosmic
exposure

- One HV tower was successfully tested in a low background environment at CUTE for the
firsttime

- Established means of calibrating detectors at low and high energies

- Many interesting observations made; analysis underway
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Thank you!
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