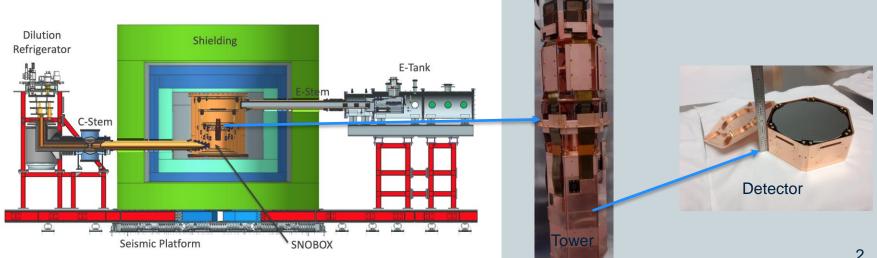
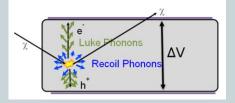
First results from testing SuperCDMS SNOLAB detectors at CUTE

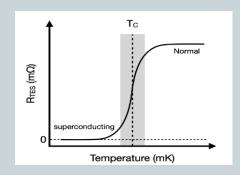
Aditi Pradeep University of British Columbia / TRIUMF On behalf of the SuperCDMS collaboration


%TRIUM

The SuperCDMS SNOLAB experiment

- 2nd generation dark matter experiment at SNOLAB
- Cryogenic detectors which measure **phonons and ionization signals**
- Operated close to absolute zero (~ 10 mK)
- Payload in the form of towers with 6 detectors each (4 towers = 24 detectors)




The SuperCDMS SNOLAB experiment

- Two kinds of detection technology:
 - Bolometric detection of **phonons** with **Transition Edge Sensors**
 - Ionization readout with High Electron Mobility Transistors
- Detector substrates: Ge and Si crystal
- Two detector types:
 - iZIPs: Phonon + charge readout (NR/ER discrimination)
 - HV: Amplified phonon only readout (Lower threshold)

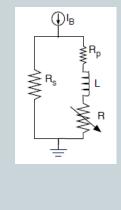
$$E_T = E_R \left(1 + Y(E_R) \frac{eV_b}{\epsilon_{eh}} \right)$$

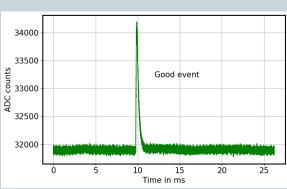
More info in next talk by Emanuele Michielin...

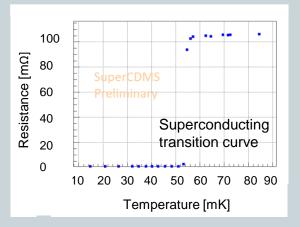
Why should we test and characterize detectors?

Early physics

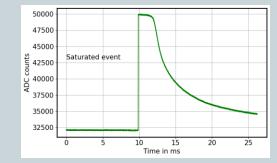
- Detector calibration
- Noise characterization
- Background estimation
- Potential early dark matter searches

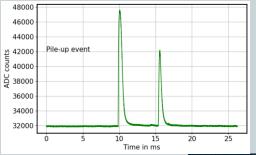

Logistics


- Establishing functionality
- Optimizing operational logistics
- Assessing detector performance
- Identifying aspects that require improvement
- Personnel training


Preliminary tests at SLAC

- Ground level testing with minimal shielding
- Four runs roughly spanning a week each
- One run per tower
- Established basic operability of all devices
- Measured preliminary detector properties (R_p, R_n, optimal I_b etc.)
- Tested high voltage operability up to 100 V

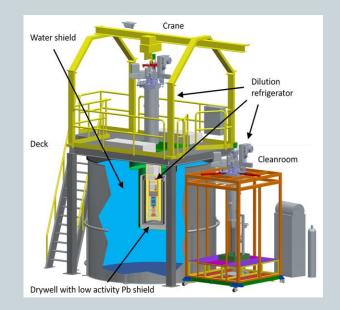



Limitation of on-surface testing

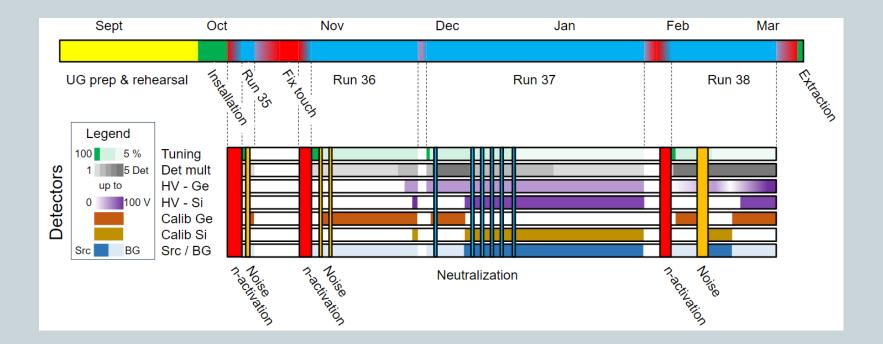
- High trigger rates of 35 Hz/ detector
- Increased cosmogenic exposure
- Very short testing times
- Well-defined set of tasks, but very limited scope

What do we need?

A well-shielded, low background site that supports SuperCDMS-style tower geometry, preferably close to the SuperCDMS site...



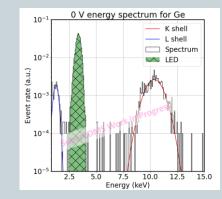
Where do we go? SNOLAB...

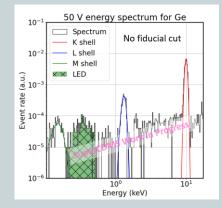


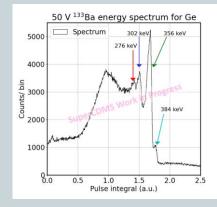
CUTE facility overview

- Cryogenic Underground Test facility at SNOLAB
- Checks all the boxes:
 - Several layers of shielding (ambient background of few events/ keV/ kg-day)
 - ☑ Natural rock overburden (~ 2 km)
 - Facility shielding (water, lead and HDPE)
 - ☑ Adjacent to SuperCDMS
 - Made to accommodate SuperCDMS tower geometry

SuperCDMS tower testing at CUTE

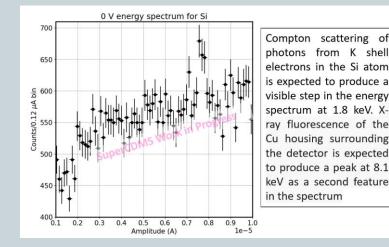

Key outcomes: Ge calibration


Neutron activation produces peaks at known energies in the spectrum

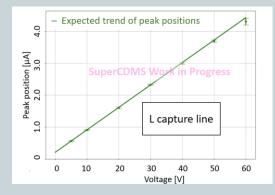

70 Ge + n	\rightarrow^{71} Ge
------------------	-----------------------

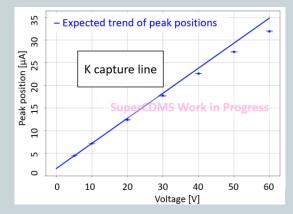
Peak / Shell	Peak position	Probability
K	10.37 keV	87.6%
L	1.3 keV	10.5%
М	0.16 keV	1.78%

- Both low and high energy calibration possible
- High energy calibration with external source
- Advanced reconstruction algorithms promise excellent energy resolution



Key outcomes: Si calibration


Compton steps at the lowest energies corresponding to atomic energy levels of the Si atom


Material	K step	L1 step	L2 step
Si	1.839 keV	0.150 keV	0.099 keV

- Observation of K step at 0 V with a few days of data
- Observation of Cu X-ray peak (8.1 keV) from the surrounding detector housing at 0 V
- Potential hints of features consistent with L1 and L2 steps with a few weeks of data at 90 V

Key outcomes: Amplification studies

Amplification consistent with NTL gain. Position of L shell peak scales linearly with voltage. Position of K shell peak scales linearly up to 30 V when TES saturation kicks in.

Key outcomes: New tools and methods

- Reconstruction techniques
 - Saturation reconstruction
 - Position reconstruction
- Detector volume fiducialization
- Noise reduction systems
- Detector neutralization schemes
- Electric field distortion from adjacent detectors

Summary

- SuperCDMS has successfully tested all four towers at SLAC
- SLAC tower testing was limited by high trigger rates and desire to minimize cosmic exposure
- One HV tower was successfully tested in a low background environment at CUTE for the first time
- Established means of calibrating detectors at low and high energies
- Many interesting observations made; analysis underway

Thank you!