

Backgrounds in the LZ Dark Matter Experiment

Dr. Daniel Kodroff Lawrence Berkeley National Lab On behalf of the LUX-ZEPLIN (LZ) Collaboration

ICHEP July 18, 2024

Dual-Phase Time Projection Chamber (TPC)

- LZ utilizes 7 tonne active xenon volume \rightarrow Self-shielding and purifiable \Rightarrow low background
- S1 and S2 signals \rightarrow Strong 3D position reconstruction and single vs multiple scatter resolution
- Daniel Kodroff | BERKELEY LAB 2 S1-S2 ratio \rightarrow Particle discrimination between electron recoils (**ER**) and nuclear recoils (**NR**)

Signals and Backgrounds

Signals:

• Single scatter nuclear recoil (NR) of DM candidate (e.g. WIMP)

Backgrounds:

- Single scatter neutrons and $CEvNS$ neutrino recoils
	- *– Neutrons vetoed with (89 ± 3)% efficiency*
- Low energy betas and single scatter gammas
	- **–** *99.75% ER-NR discrimination*

Why's it matter?

Need strong control and understanding of backgrounds to claim DM discovery!

Background model from first science results

Backgrounds In The TPC

Xenon Contaminants

(ER Backgrounds)

- ²¹⁴Pb (β in ²²²Rn chain)
- ²¹²Pb (β in ²²⁰Rn chain)
- 85 Kr (β)
- 124 Xe (2 ν ECEC)
- ¹³⁶Xe (2 $\nu\beta\beta$)
- 127 Xe (EC)

Detector Materials

ER Backgrounds

- 238U, 232Th, 40K, 60Co
- **NR Backgrounds (< 0.2)**
	- Neutrons from (α,n) and spontaneous fission

Neutrinos

ER Backgrounds (v-e⁻)

• Solar- $v:$ pp + 7 Be + CNO

NR Backgrounds (CEvNS)

- \bullet Solar- $v:$ ${}^{8}B$, HEP
- Atmospheric ν
- Diffuse supernova ν

Accidental Coincidences

Coincidences of isolated S1 and S2 pulse (largely removed by analysis cuts)

214Pb (in 222Rn chain)

- 222 Rn emanates from 238 U present in detector materials and diffuses/mixed within the LXe
- Betas from $2^{14}Pb$ is largest low energy background

$214Pb$ (β in $222Rn$ chain)

- 222 Rn emanates from 238 U present in detector materials and diffuses/mixed within the LXe
- Betas from $2^{14}Pb$ is largest low energy background
- ²¹⁴Pb can be inferred from measuring alphas or from direct fits to background

Rate $\mbox{[tomo}^{-1} \cdot \mbox{year}^{-1} \cdot \mbox{keV}^{-1}_{\mbox{\tiny eq}}$

 10°

 $10²$

06

100

200

Reconstructed Energy [keV]

 $+$ Data

 $-\text{Model}$

Measured ²¹⁴Pb rate: **3.26 ± 0.17 μBq/kg** in first science run

Xenon Flow Modeling

- Observations of 222Rn/218Po and calibration injections indicate laminar mixing state within TPC
- Can use $^{222}Rn-^{218}Po$ pairs to build a map of the xenon flow
- **• Demonstrated strong control and understanding of Xe flow and mixing in TPC!**

218Po rate and Xe flow in different Xe mixing states

Daniel Kodroff | BERKELEY LAB

214Pb Tagging

- Observations of 222Rn/218Po and calibration injections indicate laminar mixing state within TPC
- Can use $^{222}Rn-^{218}Po$ pairs to build a map of the xenon flow
- Define time-space voxels within TPC following 218 Po event to tag 214 Pb backgrounds
- Likelihood is split into tagged and untagged data-sets (no data is explicitly removed)
	- Tagged data has reduced ²¹⁴Pb background!

Preliminary performance: ~68% of 214Pb events tagged within ~9% of total exposure

Neutron Backgrounds

- LZ utilizes a two-component active veto system:
	- 2 tonne optically-isolated LXe **Skin**
	- 17 tonnes liquid scintillator outer detector (OD) doped with 0.1% Gd by mass
- Ultra-pure water tank equipped with 120 PMTs and tyvek reflector

Acrylic tanks containing Gd-LS in green and blue

Neutron Backgrounds

- LZ utilizes a two-component active veto system:
	- 2 tonne optically-isolated LXe **Skin**
	- 17 tonnes liquid scintillator outer detector (OD) doped with 0.1% Gd by mass

Efficiency (%)

- Ultra-pure water tank equipped with 120 PMTs and tyvek reflector
- Neutron veto efficiency quantified using AmLi deployed at different Z-heights spanning full TPC

Daniel Kodroff | BERKELEY LAB

Neutron Backgrounds

- Neutron constraint in background model determined by performing simultaneous fit to OD-tagged data-set
- Data-driven constraint on the rate of Detector neutrons: **< 0.2 events in 60 livedays and 5.5 tonnes LXe**
- In agreement with simulation-driven prediction!

High Energy Fits

- Spectral fits performed *in situ* to measure rate of external detector backgrounds
- Fit results agree with radioassays performed during detector construction

Accidental Coincidences

- Uncorrelated, isolated S1s and S2s can occur within an event window and mimic a real single-scatter event
- Marker of accidental events are those with drift time > length of active volume (*unphysical drift time*)
	- **Rate** determined using this sideband of events
- **Shape** of spectra determined by randomly pairing lone S1s and lone S2s
- Analysis cuts utilized to target specific event/pulse topologies
	- **– 99.6% rejection!**

Possible Physical Event

Phys. Rev. Lett. **131**, 041002 (2023) **DK** Phys. Rev. D **108,** 012010 (2023)

First Science Run BG Model

Phys. Rev. Lett. **131**, 041002 (2023) **DK** Phys. Rev. D **108,** 012010 (2023)

First Science Run BG Model

Daniel Kodroff | BERKELEY LAB 15 Best-fit number of WIMPs is **zero** across all masses.

BG Model Going Forward

Higher Energy Background Model

- Backgrounds also well characterized and modeled at higher energies
- Allows for probing suite of effective field theory (EFT) operators describing DM interactions with higher recoil energies
	- Probing many of these interactions only possible using isotopes with nuclear spin e.g. 129 Xe (spin 1/2, 26.4% abund.) and 131 Xe (spin 3/2, 21.2% abund.)

Parting Thoughts

- Strong control/understanding of backgrounds across multiple energy regimes allows for world-leading limits and discovery potential to NR-producing DM candidates
	- Many physics results already out with first data-set
- Strong control of thermodynamics $+$ laminar flow allows for tagging ^{214}Pb
	- Can tag $\sim 68\%$ of ²¹⁴Pb!
	- $214Pb$ tagging and flow mapping will be exploited in future analyses and science runs (see upcoming paper!)
- Stay tuned for future results coming soon...

LZ (LUX-ZEPLIN) Collaboration, 38 Institutions

@lzdarkmatter

https://lz.lbl.gov/

 250 scientists, engineers, and technical staff

Daniel Kodroff | BERKELEY LAB 19 Thanks to our sponsors and participating institutions!

● **Black Hills State University**

- **Brookhaven National Laboratory**
- **Brown University**
- **Center for Underground Physics**
- **Edinburgh University**
- **Fermi National Accelerator Lab.**
- **Imperial College London**
- **● King's College London**
- **Lawrence Berkeley National Lab.**
- **Lawrence Livermore National Lab.**
- **LIP Coimbra**
- **Northwestern University**
- **Pennsylvania State University**
- **Royal Holloway University of London**
- **SLAC National Accelerator Lab.**
- **South Dakota School of Mines & Tech**
- **South Dakota Science & Technology Authority**
- **STFC Rutherford Appleton Lab.**
- **Texas A&M University**
- **University of Albany, SUNY**
- **University of Alabama**
- **University of Bristol**
- **University College London**
- **University of California Berkeley**
- **University of California Davis**
- **University of California Los Angeles**
- **University of California Santa Barbara**
- **University of Liverpool**
- **University of Maryland**
- **University of Massachusetts, Amherst**
- **University of Michigan**
- **University of Oxford**
- **University of Rochester**
- **University of Sheffield**
- **● University of Sydney**
- **University of Texas at Austin**
- **● University of Wisconsin, Madison**
- **University of Zürich**
- **US Europe Asia Oceania**

Backup

Phys. Rev. Lett. **131**, 041002 (2023) **DK** Phys. Rev. D **108,** 012010 (2023)

First Science Run BG Model

Daniel Kodroff | BERKELEY LAB 21 Best-fit number of WIMPs is **zero** across all masses.

Spin-Independent Limits

Phys. Rev. Lett. **131**, 041002 (2023)

- World-leading limits on Spin-independent, elastic nuclear scattering of WIMP-nucleon
- Frequentist, 2-sided profile-likelihood ratio (PLR) test statistic, reporting 90% confidence levels
- Power constrained to -1σ
- Green and yellow are the 1σ and 2σ sensitivity bands

Reporting of limits consistent with Eur. Phys. J. C **71**, 1554 (2011), Eur. Phys. J. C **81**, 907 (2021), and arXiv:1105.3166

Spin-Dependent Limits

- WIMP interactions with non-zero nuclear spin of $129Xe$ and $131Xe$
- Gray uncertainty bands correspond to theoretical uncertainty on nuclear structure functions (applies to all xenon detectors)
- **Mean curve using structure functions from Phys. Rev. D 102, 074018 (2020)**

Sanford **Underground Research Facility South Dakota Science and Technology Authority** 8" PMTs to detect scintillation from GdLS Acrylic Vessels holding iču orazovi dru Gd Liquid Scintillator for Water tank for detector shielding neutron veto Cathode high voltage Pitched conduit for feedthrough **1990 in the U.S. of the County of The Trionne** neutron calibrations Xe TPC NIM A **953**, 163047 (2020)Xenon circulation

Presentation Title | BERKELEY LAB 24

The LZ Detector: located at 4850-ft level underground at SURF in the same cavern as the Ray Davis solar neutrino experiment

Backgrounds and Mitigations

- The proximity of the PMT and TPC systems makes them the main contributors to detector gamma background

- ¹³⁶Xe (2 \mathbf{v} β), ¹²⁴Xe (2 \mathbf{v} ECEC), and solar neutrinos are irreducible backgrounds and not subject to the mitigations outlined

Veto Systems

214Pb Tag Validation

68% reduction in $^{214}Pb!$

Time Dependent Background Model

DK Phys.Rev.D **108**, 072006 (2023)

- Time profile of backgrounds introduced as additional variable into background model in {S1c, logS2c} space.
- \bullet 127 Xe decays with 36.4 d half-life.
- \bullet 37 Ar decays with 35 d half-life.
- \bullet ²¹⁴Pb time dep. studied by looking at radon alpha rates \rightarrow constant in time

Solar Neutrinos

EW RRPA v-e Recoil Spectra CEvNS Recoil Spectra

Activation Backgrounds

- Xenon can be cosmogenically activated leading to background contributions from 127Xe, 129mXe, 131mXe, 133Xe
	- Other Xe activation products are much shorter lived
	- \circ ¹²⁷Xe forms low energy background
- Neutron calibrations before and during first science run also lead to xenon activation
- Rates measured *in situ* by fitting spectral peaks in reconstructed energy space

Presentation Title | BERKELEY LAB

Multiple Scatter Neutrons

Accidentals Origins

Isolated S1s

PMT dark count pile-up Events in gas phase Cherenkov light in PMTs or PTFE Fluorescence of PTFE Light leaks from outside TPC Charge-insensitive regions near walls \sim Charge-insensitive regions below cathode

Isolated S2s

Events in gas phase Events in liquid above gate grid Electron emission from grids Sub-S1-threshold ER events Delayed electrons after S2s Radioactivity from gate and cathode grids

Accidental PDF

EFT Operators

- Build up all possible non-relativistic operators that can occur in the effective Lagrangian that describes the WIMP-nucleus interaction
- These operators depend on (1) the relative velocity between the incoming WIMP and the nucleon, (2) the momentum transfer, (3) in addition to the WIMP spin, and (4) nucleon spin
- Spin-Independent is O_1 operator
- Spin-Dependent is O_4 operator

Fitzpatrick, Haxton, *et al* JCAP **02,** 004 (2013)

 $\mathcal{O}_1 = 1_{\mathcal{N}} 1_{N}$ $\mathcal{O}_3 = i \vec{S}_N \cdot \left[\frac{\vec{q}}{m_N} \times \vec{v}^{\perp} \right]$ $\mathcal{O}_4 = \vec{S}_{\gamma} \cdot \vec{S}_{N}$ $\mathcal{O}_5 = i \vec{S}_\chi \cdot \left[\frac{\vec{q}}{m_N} \times \vec{v}^\perp \right]$ $\mathcal{O}_6 = \left[\vec{S}_\chi \cdot \frac{\vec{q}}{m_N} \right] \left[\vec{S}_N \cdot \frac{\vec{q}}{m_N} \right]$ $\mathcal{O}_7=\vec{S}_N\cdot\vec{v}^\perp$ $\mathcal{O}_8 = \vec{S}_{\gamma} \cdot \vec{v}^{\perp}$ $\mathcal{O}_9 = i \vec{S}_\chi \cdot \left[\vec{S}_N \times \frac{\vec{q}}{m_N} \right].$ ${\cal O}_{10} = i \vec{S}_N \cdot \frac{\vec{q}}{m_N}$ $\mathcal{O}_{11} = i \vec{S}_\chi \cdot \frac{\vec{q}}{m_N}$ $\mathcal{O}_{12} = \vec{S}_\chi \cdot \left[\vec{S}_N \times \vec{v}^\perp \right]$ $\mathcal{O}_{13} = i \left[\vec{S}_\chi \cdot \vec{v}^\perp \right] \left[\vec{S}_N \cdot \frac{\vec{q}}{m_N} \right]$ $\mathcal{O}_{14} = i \left[\vec{S}_\chi \cdot \frac{\vec{q}}{m_N} \right] \left[\vec{S}_N \cdot \vec{v}^\perp \right]$ ${\cal O}_{15} = - \left[\vec{S}_\chi \cdot \frac{\vec{q}}{m_N} \right] \left[\left(\vec{S}_N \times \vec{v}^\perp \right) \cdot \frac{\vec{q}}{m_N} \right]$

Plot of 37Ar decaying away

- \bullet ³⁷Ar decays with 35 d half-life via electron capture with 2.8 keV peak from K-shell.
- Produced as result of cosmogenically induced spallation of Xe (nuclear fragmentation).
	- Predicted 11 nBq/kg rate at start of SR1
- 85 events falling within 37 Ar 2.8 keV contour plotted as function of time.
	- \circ Well fit by flat + exponential with 35 d half-life.
- Large theoretical uncertainty on production cross section \rightarrow let float in model up to x3 predicted rate.

