

Backgrounds in the LZ Dark Matter Experiment

Dr. Daniel Kodroff Lawrence Berkeley National Lab On behalf of the LUX-ZEPLIN (LZ) Collaboration

ICHEP July 18, 2024

Dual-Phase Time Projection Chamber (TPC)

- LZ utilizes 7 tonne active xenon volume → Self-shielding and purifiable ⇒ low background
- S1 and S2 signals \rightarrow Strong 3D position reconstruction and single vs multiple scatter resolution
- S1-S2 ratio → Particle discrimination between electron recoils (ER) and nuclear recoils (NR)

Signals and Backgrounds

Signals:

Single scatter nuclear recoil (NR) of DM candidate (e.g. WIMP)

Backgrounds:

- Single scatter neutrons and CEvNS neutrino recoils
 - <u>Neutrons vetoed with (89 ± 3)% efficiency</u>
- Low energy betas and single scatter gammas
 - <u>99.75% ER-NR discrimination</u>

Why's it matter?

 Need strong control and understanding of backgrounds to claim DM discovery!

Background model from first science results

Backgrounds In The TPC

Xenon Contaminants

(ER Backgrounds)

- ²¹⁴Pb (β in ²²²Rn chain)
- 212 Pb (β in 220 Rn chain)
- ⁸⁵Kr (β)
- 124 Xe (2 ν ECEC)
- 136 Xe ($2\nu\beta\beta$)
- ¹²⁷Xe (EC)

Detector Materials

ER Backgrounds

- ²³⁸U, ²³²Th, ⁴⁰K, ⁶⁰Co
- NR Backgrounds (< 0.2)
 - Neutrons from (α, n) and spontaneous fission

<u>Neutrinos</u>

ER Backgrounds (*v*-e⁻)

• Solar-v: pp + ⁷Be + CNO

NR Backgrounds (CEvNS)

- Solar-v: ⁸B, HEP
- Atmospheric *v*
- Diffuse supernova v

Accidental Coincidences

 Coincidences of isolated S1 and S2 pulse (largely removed by analysis cuts)

²¹⁴Pb (β in ²²²Rn chain)

- ²²²Rn emanates from ²³⁸U present in detector materials and diffuses/mixed within the LXe
- Betas from ²¹⁴Pb is largest low energy background

²¹⁴Pb (β in ²²²Rn chain)

- ²²²Rn emanates from ²³⁸U present in detector materials and diffuses/mixed within the LXe
- Betas from ²¹⁴Pb is largest low energy background
- ²¹⁴Pb can be inferred from measuring alphas or from direct fits to background

Rate [tonne⁻¹ \cdot year⁻¹ \cdot keV⁻¹

Model-Data Data 0.4 0.2 0.0 -0.2 -0.4 -0.6

10

10

0.6

100

200

Reconstructed Energy [keV]

+ Data

- Model

Measured ²¹⁴Pb rate: $3.26 \pm 0.17 \,\mu Bq/kg$ in first science run

Xenon Flow Modeling

- Observations of ²²²Rn/²¹⁸Po and calibration injections indicate laminar mixing state within TPC
- Can use ²²²Rn-²¹⁸Po pairs to build a map of the xenon flow
- Demonstrated strong control and understanding of Xe flow and mixing in TPC!

²¹⁸Po rate and Xe flow in different Xe mixing states

Daniel Kodroff | BERKELEY LAB

²¹⁴Pb Tagging

- Observations of ²²²Rn/²¹⁸Po and calibration injections indicate laminar mixing state within TPC
- Can use ²²²Rn-²¹⁸Po pairs to build a map of the xenon flow
- Define time-space voxels within TPC following ²¹⁸Po event to tag ²¹⁴Pb backgrounds
- Likelihood is split into tagged and untagged data-sets (no data is explicitly removed)
 - Tagged data has reduced ²¹⁴Pb background!

Preliminary performance: ~68% of ²¹⁴Pb events tagged within ~9% of total exposure

Neutron Backgrounds

- LZ utilizes a two-component active veto system:
 - 2 tonne optically-isolated LXe
 Skin
 - 17 tonnes liquid scintillator outer detector (OD) doped with 0.1% Gd by mass
- Ultra-pure water tank equipped with 120 PMTs and tyvek reflector

Acrylic tanks containing Gd-LS in green and blue

Neutron Backgrounds

- LZ utilizes a two-component active veto system:
 - 2 tonne optically-isolated LXe
 Skin
 - 17 tonnes liquid scintillator outer detector (OD) doped with 0.1% Gd by mass

Efficiency (%)

- Ultra-pure water tank equipped with 120 PMTs and tyvek reflector
- Neutron veto efficiency quantified using AmLi deployed at different Z-heights spanning full TPC

Neutron Backgrounds

- Neutron constraint in background model determined by performing simultaneous fit to OD-tagged data-set
- In agreement with simulation-driven prediction!

High Energy Fits

- Spectral fits performed *in situ* to measure rate of external detector backgrounds
- Fit results agree with radioassays performed during detector construction

Isotope/	Region	Screening	Best fit [Bq]
Chain		estimate [Bq]	
	Top	1.13 ± 0.11	1.05 ± 0.11
60 Co	Side	1.18 ± 0.12	1.12 ± 1.02
	Bottom	0.81 ± 0.08	1.53 ± 0.19
	Total	3.11 ± 0.18	3.71 ± 1.04
	Top	7.63 ± 0.76	2.94 ± 1.66
40 K	Side	2.56 ± 0.26	6.32 ± 0.61
	Bottom	6.54 ± 0.65	5.58 ± 2.19
	Total	16.73 ± 1.04	14.85 ± 2.81
	Top	0.28 ± 0.03	0.33 ± 0.29
232 Th-early	Side	0.66 ± 0.07	0.66 ± 0.49
	Bottom	0.22 ± 0.02	0.23 ± 0.17
	Total	1.16 ± 0.07	1.22 ± 0.59
	Top	0.25 ± 0.02	0.11 ± 0.16
232 Th-late	Side	1.05 ± 0.10	2.57 ± 1.75
	Bottom	0.30 ± 0.03	0.32 ± 0.27
	Total	1.59 ± 0.11	3.00 ± 1.78
	Top	2.37 ± 0.24	3.70 ± 1.80
238 U-early	Side	1.99 ± 0.20	3.92 ± 1.53
	Bottom	1.86 ± 0.19	2.72 ± 1.40
	Total	6.21 ± 0.36	10.34 ± 2.75
	Top	0.84 ± 0.08	0.63 ± 0.30
238 U-late	Side	0.54 ± 0.05	3.01 ± 0.61
	Bottom	0.95 ± 0.09	1.28 ± 0.73
	Total	2.32 ± 0.14	4.92 ± 1.00

Accidental Coincidences

- Uncorrelated, isolated S1s and S2s can occur within an event window and mimic a real single-scatter event
- Marker of accidental events are those with drift time > length of active volume (*unphysical drift time*)
 - <u>Rate</u> determined using this sideband of events
- <u>Shape</u> of spectra determined by randomly pairing lone S1s and lone S2s
- Analysis cuts utilized to target specific event/pulse topologies
 - 99.6% rejection!

Possible Physical Event

Definite Accidental Event

Daniel Kodroff | BERKELEY LAB

Phys. Rev. Lett. **131**, 041002 (2023) **DK** Phys. Rev. D **108**, 012010 (2023)

First Science Run BG Model

Source	Expected Events
214 Pb	164 ± 35
212 Pb	18 ± 5
$^{85}\mathrm{Kr}$	32 ± 5
Det. ER	1.2 ± 0.4
β decays + Det. ER	215 ± 36
$ u \mathrm{ER} $	27.1 ± 1.6
127 Xe	9.2 ± 0.8
124 Xe	5.0 ± 1.4
$^{136}\mathrm{Xe}$	15.1 ± 2.4
$^{8}\mathrm{B}~\mathrm{CE}\nu\mathrm{NS}$	0.14 ± 0.01
Accidentals	1.2 ± 0.3
Subtotal	273 ± 36
$^{37}\mathrm{Ar}$	[0, 288]
Detector neutrons	$0.0^{+0.2}$
$30{ m GeV/c^2}$ WIMP	_
Total	—

Phys. Rev. Lett. **131**, 041002 (2023) **DK** Phys. Rev. D **108**, 012010 (2023)

First Science Run BG Model

Source	Expected Events	Fit Result
214 Pb	164 ± 35	-
212 Pb	18 ± 5	-
85 Kr	32 ± 5	-
Det. ER	1.2 ± 0.4	-
β decays + Det. ER	215 ± 36	222 ± 16
$ u { m ER} $	27.1 ± 1.6	27.2 ± 1.6
127 Xe	9.2 ± 0.8	9.3 ± 0.8
$^{124}\mathrm{Xe}$	5.0 ± 1.4	5.2 ± 1.4
$^{136}\mathrm{Xe}$	15.1 ± 2.4	15.2 ± 2.4
$^{8}\mathrm{B}~\mathrm{CE}\nu\mathrm{NS}$	0.14 ± 0.01	0.15 ± 0.01
Accidentals	1.2 ± 0.3	1.2 ± 0.3
Subtotal	273 ± 36	280 ± 16
$^{37}\mathrm{Ar}$	[0, 288]	$52.5^{+9.6}_{-8.9}$
Detector neutrons	$0.0^{+0.2}$	$0.0^{+0.2}$
$30{ m GeV/c^2}$ WIMP	_	$0.0^{+0.6}$
Total		333 ± 17

Best-fit number of WIMPs is zero across all masses.

BG Model Going Forward

		_	
Source	Expected Events		Expect to tag >60% of these in future analyses
214 Pb	164 ± 35]	
212 Pb	18 ± 5	and runs!	
85 Kr	32 ± 5		
Det. ER	1.2 ± 0.4		
β decays + Det. ER	215 ± 36	-	
$ u { m ER} $	27.1 ± 1.6	-	
127 Xe	9.2 ± 0.8		Wall abaracterized and rejected via in analysis
124 Xe	5.0 ± 1.4		Well characterized and rejected via in analysis
136 Xe	15.1 ± 2.4		
$^{8}B \text{ CE}\nu \text{NS}$	0.14 ± 0.01		
Accidentals	1.2 ± 0.3	Y	
Subtotal	273 ± 36	-	
37 Ar	[0, 288])	Decaying and won't be present in future runs
Detector neutrons	$0.0^{+0.2}$		
$30 \mathrm{GeV/c^2}$ WIMP		· \	
Total	at		
			Strongly vetoed by Gd liquid scintillator and
			consistent with sims-driven prediction
Daniel Kodroff BERKELEY AB			

Higher Energy Background Model

- Backgrounds also well characterized and modeled at higher energies
- Allows for probing suite of effective field theory (EFT) operators describing DM interactions with ٠ higher recoil energies
 - Probing many of these interactions only possible using isotopes with nuclear spin e.g. _ ¹²⁹Xe (spin 1/2, 26.4% abund.) and ¹³¹Xe (spin 3/2, 21.2% abund.)

			4.50
Source	Expected Events	Fit Result	Detector ER
Flat ER	517.4 ± 82.8	574.7 ± 30.2	4.25
Detector ER	18.4 ± 9.2	22.3 ± 8.1	
$ u { m ER} $	55.3 ± 5.5	55.5 ± 5.5	Betas
124 Xe	8.2 ± 2.0	8.7 ± 2.0	(P
127 Xe	20.5 ± 1.8	20.8 ± 1.8	
$^{136}\mathrm{Xe}$	55.1 ± 11.6	58.2 ± 11.2	
$^{125}\mathrm{I}$	30.1 ± 15.6	34.2 ± 8.9	Se 3,50 1 TeV O ₆ Model
$^{8}\mathrm{B}~\mathrm{CE}\nu\mathrm{NS}$	0.14 ± 0.01	0.14 ± 0.01	
Accidentals	1.3 ± 0.3	1.3 ± 0.03	
Subtotal	706 ± 86	775 ± 34	^{3.25} NR Model
³⁷ Ar	[0, 288]	49.5 ± 9.4	3.00 31.6 6.6 ke 31.6 105.5 ke 200
Detector neutrons	$0.0^{+0.5}$	$0.0^{+1.8}$	3.00 3.00 3.00 3.00 3.00 3.00 5.00
Total	-	825 ± 36	2.75
-			0.5 1.0 1.5 2.0 2.5
odroff BERKELEY LAB			$\log_{10}(S1c \text{ [phd]})$

Daniel Kodroff | BERKELEY LAB

Parting Thoughts

- Strong control/understanding of backgrounds across multiple energy regimes allows for world-leading limits and discovery potential to NR-producing DM candidates
 - Many physics results already out with first data-set
- Strong control of thermodynamics + laminar flow allows for tagging ²¹⁴Pb
 - Can tag ~68% of ²¹⁴Pb!
 - ²¹⁴Pb tagging and flow mapping will be exploited in future analyses and science runs (see upcoming paper!)
- Stay tuned for future results coming soon...

LZ (LUX-ZEPLIN) Collaboration, 38 Institutions

@lzdarkmatter

https://lz.lbl.gov/

- LZ Collaboration Meeting at SURF, June 2023
- KK SANFORD Science and Swiss National FCI UNDERGROUND Technology Science Foundation **Facilities Council** Fundação para a Ciência e a Tecnologia FACILITY

- **Brookhaven National Laboratory** .
- **Brown University** .
- Center for Underground Physics .
- . Edinburgh University
- Fermi National Accelerator Lab.
- Imperial College London .
- King's College London .
- Lawrence Berkeley National Lab. .
- Lawrence Livermore National Lab.
- LIP Coimbra .
- Northwestern University
- Pennsylvania State University
- **Royal Holloway University of London** .
- SLAC National Accelerator Lab.
- South Dakota School of Mines & Tech
- South Dakota Science & Technology Authority
- STFC Rutherford Appleton Lab. .
- Texas A&M University
- University of Albany, SUNY
- University of Alabama
- University of Bristol .
- University College London .
- . University of California Berkeley
- **University of California Davis**
- University of California Los Angeles .
- University of California Santa Barbara
- University of Liverpool .
- University of Maryland
- University of Massachusetts, Amherst
- **University of Michigan**
- University of Oxford .
- **University of Rochester**
- **University of Sheffield** .
- University of Sydney
- University of Texas at Austin
- University of Wisconsin, Madison .
- University of Zürich .
- US Asia Oceania Europe

250 scientists, engineers, and technical staff

Backup

Phys. Rev. Lett. **131**, 041002 (2023) **DK** Phys. Rev. D **108**, 012010 (2023)

First Science Run BG Model

Source	Expected Events	Fit Result
214 Pb	164 ± 35	-
212 Pb	18 ± 5	-
$^{85}\mathrm{Kr}$	32 ± 5	-
Det. ER	1.2 ± 0.4	-
β decays + Det. ER	215 ± 36	222 ± 16
$ u { m ER} $	27.1 ± 1.6	27.2 ± 1.6
127 Xe	9.2 ± 0.8	9.3 ± 0.8
124 Xe	5.0 ± 1.4	5.2 ± 1.4
136 Xe	15.1 ± 2.4	15.2 ± 2.4
$^{8}\mathrm{B}~\mathrm{CE}\nu\mathrm{NS}$	0.14 ± 0.01	0.15 ± 0.01
Accidentals	1.2 ± 0.3	1.2 ± 0.3
Subtotal	273 ± 36	280 ± 16
³⁷ Ar	[0, 288]	$52.5^{+9.6}_{-8.9}$
Detector neutrons	$0.0^{+0.2}$	$0.0^{+0.2}$
$30{ m GeV/c^2}$ WIMP	_	$0.0^{+0.6}$
Total		333 ± 17

Best-fit number of WIMPs is zero across all masses.

Spin-Independent Limits

Phys. Rev. Lett. 131, 041002 (2023)

- <u>World-leading limits</u> on Spin-independent, elastic nuclear scattering of WIMP-nucleon
- Frequentist, 2-sided profile-likelihood ratio (PLR) test statistic, reporting 90% confidence levels
- Power constrained to -1σ
- Green and yellow are the 1σ and 2σ sensitivity bands

Reporting of limits consistent with Eur. Phys. J. C 71, 1554 (2011), Eur. Phys. J. C 81, 907 (2021), and arXiv:1105.3166

Spin-Dependent Limits

- WIMP interactions with non-zero nuclear spin of ¹²⁹Xe and ¹³¹Xe
- Gray uncertainty bands correspond to theoretical uncertainty on nuclear structure functions (applies to all xenon detectors)
- Mean curve using structure functions from Phys. Rev. D 102, 074018 (2020)

8" PMTs to detect scintillation from GdLS Acrylic Vessels holding i thi think the state of the st Gd Liquid Scintillator for Water tank for detector shielding neutron veto Cathode high voltage ********** Pitched conduit for feedthrough 7 tonne neutron calibrations Xe TPC NIM A **953**, 163047 (2020) Xenon circulation 24

The LZ Detector: located at 4850-ft level underground at SURF in the same cavern as the Ray Davis solar neutrino experiment

Presentation Title | BERKELEY LAB

Backgrounds and Mitigations

Origin	Background	Mitigation/Reduction
Detector Materials	 ERs from ²³⁸U, ²³²Th, ⁶⁰Co, ⁴⁰K NRs from ²³⁸U USF and U/Th (α,n) ERs from ²²²Rn/²²⁰Rn chain 	 Radio-assay campaign with gamma screening Radon emanation Inline radon reduction system
Cleanliness during Construction	 Radon progeny plate-out on TPC walls Dust on LXe wetted surfaces 	 TPC constructed and assembled in Radon reduced cleanroom
Internal Xenon Contaminants	 ERs from ¹³⁶Xe (2νββ), ¹²⁴Xe (2νECEC), ⁸⁵Kr, ³⁹Ar 	 Charcoal chromatography at SLAC Inline gas purification
Cosmogenic/ External	 Gammas from cavern walls Muon induced neutrons Activated xenon Solar neutrinos 	 4300 m.w.e overburden at SURF Gd-LS OD and LXe Skin High purity water shield

- The proximity of the PMT and TPC systems makes them the main contributors to detector gamma background

 136 Xe ($2\nu\beta\beta$), 124 Xe (2ν ECEC), and solar neutrinos are irreducible backgrounds and not subject to the mitigations outlined

Veto Systems

²¹⁴Pb Tag Validation

• 68% reduction in ²¹⁴Pb!

27

Time Dependent Background Model

DK Phys.Rev.D 108, 072006 (2023)

- Time profile of backgrounds introduced as additional variable into background model in {S1c, logS2c} space.
- ¹²⁷Xe decays with 36.4 d half-life.
- ³⁷Ar decays with 35 d half-life.
- ²¹⁴Pb time dep. studied by looking at radon alpha rates → constant in time

Solar Neutrinos

EW RRPA v-e Recoil Spectra

CEvNS Recoil Spectra

Activation Backgrounds

- Xenon can be cosmogenically activated leading to background contributions from ¹²⁷Xe, ^{129m}Xe, ^{131m}Xe, ¹³³Xe
 - Other Xe activation products are much shorter lived
 - ¹²⁷Xe forms low energy background
- Neutron calibrations before and during first science run also lead to xenon activation
- Rates measured *in situ* by fitting spectral peaks in reconstructed energy space

Multiple Scatter Neutrons

Accidentals Origins

Isolated S1s PMT dark count pile-up Events in gas phase Cherenkov light in PMTs or PTFE Fluorescence of PTFE Light leaks from outside TPC Charge-insensitive regions near walls

Charge-insensitive regions below cathode -

Mimics a real scatter

Isolated S2s

Events in gas phase
Events in liquid above gate grid
Electron emission from grids
Sub-S1-threshold ER events
Delayed electrons after S2s
Radioactivity from gate and cathode grids

Accidental PDF

Source	Expected Events	Fit Result
214 Pb	164 ± 35	-
$^{212}\mathrm{Pb}$	18 ± 5	-
85 Kr	32 ± 5	-
Det. ER	1.2 ± 0.4	-
β decays + Det. ER	215 ± 36	222 ± 16
$ u { m ER} $	27.1 ± 1.6	27.2 ± 1.6
127 Xe	9.2 ± 0.8	9.3 ± 0.8
124 Xe	5.0 ± 1.4	5.2 ± 1.4
136 Xe	15.1 ± 2.4	15.2 ± 2.4
${}^{8}\mathrm{B}\ \mathrm{CE}\nu\mathrm{NS}$	0.14 ± 0.01	0.15 ± 0.01
Accidentals	1.2 ± 0.3	$\overline{1.2\pm0.3}$
$\operatorname{Subtotal}$	273 ± 36	280 ± 16
³⁷ Ar	[0, 288]	$52.5^{+9.6}_{-8.9}$
Detector neutrons	$0.0^{+0.2}$	$0.0^{+0.2}$
$30{ m GeV/c^2}$ WIMP	_	$0.0^{+0.6}$
Total		333 ± 17

EFT Operators

- Build up all possible non-relativistic operators that can occur in the effective Lagrangian that describes the WIMP-nucleus interaction
- These operators depend on (1) the relative velocity between the incoming WIMP and the nucleon, (2) the momentum transfer, (3) in addition to the WIMP spin, and (4) nucleon spin
- Spin-Independent is O₁ operator
- Spin-Dependent is O₄ operator

Fitzpatrick, Haxton, et al JCAP 02, 004 (2013)

 $\mathcal{O}_1 = 1_{\mathcal{V}} 1_N$ $\mathcal{O}_3 = i ec{S}_N \cdot \left[rac{ec{q}}{m_N} imes ec{v}^\perp
ight]$ $\mathcal{O}_4 = \vec{S}_\gamma \cdot \vec{S}_N$ $\mathcal{O}_5 = i ec{S}_\chi \cdot \left[rac{ec{q}}{m_N} imes ec{v}^\perp
ight]$ $\mathcal{O}_6 = \left[\vec{S}_{\chi} \cdot \frac{\vec{q}}{m_N} \right] \left[\vec{S}_N \cdot \frac{\vec{q}}{m_N} \right]$ $\mathcal{O}_7 = ec{S}_N \cdot ec{v}^\perp$ $\mathcal{O}_8 = \vec{S}_\gamma \cdot \vec{v}^\perp$ $\mathcal{O}_9 = i ec{S}_\chi \cdot \left[ec{S}_N imes rac{ec{q}}{m_N}
ight]$ $\mathcal{O}_{10} = i ec{S}_N \cdot rac{ec{q}}{m_N}$ $\mathcal{O}_{11}=iec{S}_{\chi}\cdotrac{ec{q}}{m}$ $\mathcal{O}_{12} = ec{S}_{\chi} \cdot \left[ec{S}_N imes ec{v}^{\perp}
ight]$ $\mathcal{O}_{13} = i \left[ec{S}_{\chi} \cdot ec{v}^{\perp}
ight] \left[ec{S}_N \cdot rac{ec{q}}{m_N}
ight]$ $\mathcal{O}_{14} = i \left[\vec{S}_{\chi} \cdot \frac{\vec{q}}{m_N} \right] \left[\vec{S}_N \cdot \vec{v}^{\perp} \right]$ $\mathcal{O}_{15} = -\left[ec{S}_{\chi} \cdot rac{ec{q}}{m_N}
ight] \left[\left(ec{S}_N imes ec{v}^{\perp}
ight) \cdot rac{ec{q}}{m_N}
ight]$

Plot of ³⁷Ar decaying away

- ³⁷Ar decays with 35 d half-life via electron capture with 2.8 keV peak from K-shell.
- Produced as result of cosmogenically induced spallation of Xe (nuclear fragmentation).
 - Predicted 11 nBq/kg rate at start of SR1
- 85 events falling within ³⁷Ar 2.8 keV contour plotted as function of time.
 - Well fit by flat + exponential with 35 d half-life.
- Large theoretical uncertainty on production cross section → let float in model up to x3 predicted rate.

