# QUEST-DMC: Probing Dark Matter with Nanowires, Superfluid Helium-3 and Quantum Sensors Paolo Franchini





# **QUEST-DMC programme**

- Beyond Standard Model physics investigation
  - Quantum sensors
  - Helium at ultra-low temperatures

#### 1) What is the nature of Dark Matter?

Detection of sub-GeV dark matter with a quantum-amplified superfluid He3 calorimeter

### 2) How did the early universe evolve?

Phase transition in extreme matter ↔ early universe



### "I was conscious that I knew practically nothing..."



### "I was conscious that I knew practically nothing..."



### Socrates:

0 books

### "I was conscious that I knew practically nothing..."

### Socrates:

0 books



### **Dark matter hep-th:** 1300 papers on arχiv

# **Direct dark matter detection**

- WIMP candidates
- Theoretical motivation for **sub-GeV** dark matter models
- Reach sub-eV recoil energy for low mass investigation
- Novel use of superfluid <sup>3</sup>He





### **QUEST-DMC**



### **QUEST-DMC**

![](_page_8_Figure_1.jpeg)

![](_page_8_Picture_2.jpeg)

![](_page_9_Figure_0.jpeg)

- Superfluid (1972) below 2.5 mK
- Spin <sup>1</sup>/<sub>2</sub>: spin dependent sensitivity
- Solid (bcc) Pressure (MPa) 3 -Superfluid A phase Superfluid B phase Normal liquid Gas 0.0001 0.001 0.01 0.1 10 100 Temperature (K)

- <sup>3</sup>He-B:
  - He3 as a fermionic condensate (similar to BSC theory)
  - Cooper pairs: composite bosons, 100nm size
  - Pair of bound quasiparticles with 10<sup>-7</sup> eV energy and an effective mass

Target

#### Lancaster advanced refrigerator Target Lancaster 🤒 University Still 0.5 K **Tubular Heat** Exchanger **Discrete Heat** Liquid nitrogen Exchanger Cryostat 70K 3m Mixing 1.6 mK He4 bath Chamber 4.2K world Heat Switch record **Dilution refrigerator** 2mK **Nuclear stage** Demagnetisation Stage 80 uK 80**u**K vacuum can <sub>11</sub>

Paolo Franchini

••••••

### **Dark Matter events in He3**

- Collision WIMP-He3 atom
  - Heat: quasiparticle excitations (10<sup>7</sup>/eV)
  - Light: from de-excitation

![](_page_11_Figure_4.jpeg)

![](_page_11_Figure_5.jpeg)

### **QUEST-DMC**

![](_page_12_Figure_1.jpeg)

Vibrating nanowire

### **Bolometer response**

- Wire oscillating in magnetic field in a He3 cm<sup>3</sup> box
- Damping force on the oscillator due to QP interactions
- Voltage response
- Measure **energy deposition** as variation of the resonance width ∆f

![](_page_13_Figure_5.jpeg)

Detector

# First prototype: cells with wires

### Detector

![](_page_14_Picture_2.jpeg)

# **Photon sensing**

- Silicon PhotoMultipliers explored technology
- SIPMs have high-gain and single photon resolution
- Successfully tested at 25mK (1K in literature A. Ferri et al, 2016 JINST 11 P03023)
- To be coupled with a scintillator

![](_page_15_Figure_5.jpeg)

![](_page_15_Picture_6.jpeg)

![](_page_15_Picture_7.jpeg)

![](_page_15_Figure_8.jpeg)

### **QUEST-DMC**

![](_page_16_Figure_1.jpeg)

Quantum sensor

### **Bolometer in He3**

• Deposited energy as variation of the damping force on the resonator

![](_page_17_Figure_2.jpeg)

Superconducting QUantum Interference Device Magnetometer, 10<sup>-14</sup> T (brain: 10<sup>-13</sup>T) Magnetic flux into electrical voltage

#### Paolo Franchini

Readout

### **QUEST-DMC**

![](_page_18_Picture_1.jpeg)

### Background

### • Radiogenic

- Cosmic rays
- Neutrinos

| Material        | Up $^{238}$ U        | Lower $^{238}\mathrm{U}$ | $^{210}\mathrm{Pb}$    | Upper $^{232}$ Th    | Lower $^{232}\mathrm{Th}$ | $^{235}\mathrm{U}$  | $^{137}Cs$ | $^{40}\mathrm{K}$  | $^{60}\mathrm{Co}$ | $^{54}\mathrm{Mn}$ |
|-----------------|----------------------|--------------------------|------------------------|----------------------|---------------------------|---------------------|------------|--------------------|--------------------|--------------------|
| Concrete        | $< 1.60 \times 10^5$ | $1.50 \times 10^{4}$     | $1.00 \times 10^7$     | $7.57 \times 10^{3}$ | $7.57 \times 10^{3}$      | $<7.20{\times}10^3$ | 800        | $4.20 \times 10^4$ | < 700              | 0.00               |
| Aluminium       | $8.33 \times 10^{3}$ | 15.3                     | 70.7                   | 356                  | 334                       | 60.5                | < 0.940    | < 3.12             | < 1.10             | 0.00               |
| Superinsulation | 679                  | < 200                    | $< 3.90 \times 10^{3}$ | 200                  | 200                       | 4.93                | 0.00       | $3.50 \times 10^3$ | 400                | 0                  |
| Stainless Steel | 16                   | 2.5                      | 82.2                   | 3.1                  | 3.90                      | 0.120               | 2.00       | < 6.20             | < 5.20             | 1.70               |
| Steel           | < 12.4               | 12                       | $1.20 \times 10^{4}$   | 4.88                 | 4.88                      | 3.00                | 2.00       | 34.1               | 30.0               | 1.00               |
| Araldite        | < 3.60               | < 4.80                   | 14.5                   | < 3.40               | < 2.20                    | 0.0260              | 2.00       | 25.5               | 8.00               | 0.00               |
| Stycast         | < 10.5               | < 9.50                   | < 14.9                 | < 12.8               | < 6.20                    | 0.0762              | 2.00       | 122                | 10.0               | 0.00               |

| Component      | Expected cou                | unts [0-10 keV]       | Uncertainty |
|----------------|-----------------------------|-----------------------|-------------|
|                | $/\mathrm{kg}/\mathrm{day}$ | /cell/day             |             |
| Cosmic ray     | $1.05 \times 10^5$          | 3.31                  | $11 \ \%$   |
| Radiogenic ER  | $8.31 \times 10^4$          | 2.61                  | 14~%        |
| Solar $\nu$ ER | $1.51 \times 10^{-2}$       | $4.76 \times 10^{-7}$ | 2~%         |
| Solar $\nu$ NR | $6.37 \times 10^{-4}$       | $2.01 \times 10^{-9}$ | 2~%         |
| TOTAL          | $1.88 \times 10^5$          | 5.92                  |             |

![](_page_19_Figure_6.jpeg)

![](_page_19_Picture_7.jpeg)

Analysis

# **Sensitivity projection**

![](_page_20_Figure_1.jpeg)

# **Sensitivity projection**

![](_page_21_Figure_1.jpeg)

# Signal simulation Background

- 5 cells
- Exposure: 0.0135 g/years of <sup>3</sup>He
- 1 year with 50% duty cycle

simulation

![](_page_22_Figure_4.jpeg)

 $10^{1}$ 

#### **First prototype of bolometer** DATA Lancaster Star University heater wire 13.5 um thermometer wire exchang 4.5 um 0.4 3400 3400 3200 3000 2800 2600 2600 0.10 Width Variation (Hz) cells with nanowires 41 Midth 0.0 2200 -2.50.0 7.5 2.5 5.0 0 1 Ś 5 6 Time (s) Power of heater wire [pW]

### First prototype of bolometer 🚽

![](_page_24_Figure_1.jpeg)

Extract:

• Rate of background events

**DATA!** 

- Energy spectrum
- Energy threshold

# **Conclusion and outlook**

- Produced a **first sensitivity limit**, based on actual constructed detector cells and modelled energy reconstruction validated on data (published in EPJ-C)
- Simulation and analysis pipeline in place
- **First prototype** run in 2023
- Work in progress:
  - Develop the energy calibration of the bolometer with external Fe55 **source**
  - Demonstrate **SQUID** readout at µK temperatures
  - Implement light detection in the cell
  - Add cosmic rays tagging

### **Conclusion and outlook**

• New copper bolometers

![](_page_26_Picture_2.jpeg)

![](_page_26_Picture_3.jpeg)

# **Conclusion and outlook**

- Start operating <sup>3</sup>He cells with nanowires, with
- **SQUID** readout, and
- Calibration **sources**

![](_page_27_Picture_4.jpeg)

Great potential for quantum technologies to open up a new window on the dark matter universe

"QUEST-DMC superfluid 3He detector for sub-GeV dark matter" https://link.springer.com/article/10.1140/epjc/s10052-024-12410-8