Searches for Dark Matter and Baryogenesis at BABAR

By Sophie Charlotte Middleton

ICHEP 2024

Prague

(smidd@caltech.edu)

July 2024

Beyond the Standard Model

The Standard Model (SM) is capable of successfully describing nature to good precision.

However, several outstanding issues which must be further explored:

- Baryon Asymmetry in the Universe (BAU);
- Nature of Dark Matter;
- Existence of Dark Energy;
- Origins of Neutrino Mass;
- Fine Tuning Requirements (e.g. Higgs mass);
- Gravity at the Quantum Scale.

Beyond the Standard Model

The Standard Model (SM) is capable of successfully describing nature to good precision.

However, several outstanding issues which must be further explored:

- Baryon Asymmetry in the Universe (BAU);
- Nature of Dark Matter;
- Existence of Dark Energy;
- Origins of Neutrino Mass;
- Fine Tuning Requirements (e.g. Higgs mass);
- Gravity at the Quantum Scale.

Beyond the Standard Model

The Standard Model (SM) is capable of successfully describing nature to good precision.

However, several outstanding issues which must be further explored:

- Baryon Asymmetry in the Universe (BAU);
- Nature of Dark Matter;
- Existence of Dark Energy;
- Origins of Neutrino Mass;
- Fine Tuning Requirements (e.g. Higgs mass);
- Gravity at the Quantum Scale.

B-Mesogenesis can simultaneously explain Baryon Asymmetry in the Universe (BAU) and Dark Matter (DM):

- B-mesons decay to: SM baryon (B), dark-sector baryon (ψ_D) and any number of SM mesons (M);
- CP violation from $B^0 \overline{B}^0$ oscillations generates a matter-antimatter asymmetry;
- B^0 decays slightly dominate over \overline{B}^0 decays into anti-baryons;
- Net excess of baryon in the visible sector, and an anti-baryon excess in the dark sector;
- Baryon number in the whole universe is conserved, but a net excess is present in the visible sector.

Dark Matter and Baryogenesis at BABAR – Sophie Middleton – smidd@caltech.edu

B-Mesogenesis can simultaneously explain Baryon Asymmetry in the Universe (BAU) and Dark Matter (DM):

- B-mesons decay to: SM baryon (B), dark-sector baryon (ψ_D) and any number of SM mesons (M);
- CP violation from $B^0 \overline{B}^0$ oscillations generates a matter-antimatter asymmetry;
- B^0 decays slightly dominate over \overline{B}^0 decays into anti-baryons;
- Net excess of baryon in the visible sector, and an anti-baryon excess in the dark sector;
- Baryon number in the whole universe is conserved, but a net excess is present in the visible sector.

Phys. Rev. D 104, 035028 (2021).

Dark Matter and Baryogenesis at BABAR – Sophie Middleton – smidd@caltech.edu

- ψ_D decay into stable dark sector particles producing the relic abundance we see today;
- Kinematic constraints require that the ψ_D mass lies between 0.94 4.34 GeV/c²
- Need to explore channels which have access to all operators $O_{i,j} = (\psi_D b) (q_i q_j) (i = u, c and j = d, s);$
- Flavor constraints imply that only one operator can be active in the early universe, one dominates, not a combination of operators.

- ψ_D decay into stable dark sector particles producing the relic abundance we see today;
- Kinematic constraints require that the ψ_D mass lies between 0.94 4.34 GeV/c²
- Need to explore channels which have access to all operators $O_{i,j} = (\psi_D b) (q_i q_j) (i = u, c and j = d, s);$
- Flavor constraints imply that only one operator can be active in the early universe, one dominates, not a combination of operators.

Initial State	Final State	Operators	∆M (MeV/c²)
B^{0}	$\psi_D + \Lambda$	O _{us}	4163.95
B^{0}	$\psi_D + \Xi_c^0$	O_{cd}	2807.76
B ⁰	$\psi_D + \Lambda_c^+ + \pi^-$	O _{cd}	2853.60
B^+	$\psi_D + p$	O_{ud}	4341.05
B^+	$\psi_D + \Sigma^+$	O_{us}	4089.95
B^+	$\psi_D + \Lambda_c^+$	O_{cd}	2992.86
B ⁺	$\psi_D + \Xi_c^+$	O_{cs}	2810.36

- ψ_D decay into stable dark sector particles producing the relic abundance we see today;
- Kinematic constraints require that the ψ_D mass lies between 0.94 4.34 GeV/c²
- Need to explore channels which have access to all operators $O_{i,j} = (\psi_D b) (q_i q_j) (i = u, c and j = d, s);$
- Flavor constraints imply that only one operator can be active in the early universe, one dominates, not a combination of operators.

Initial St	ate Final State	e Operator	s ∆M (MeV/c	²) BABAR Results
B ⁰	$\psi_D + \Lambda$	0 _{us}	4163.95	Phys.Rev.D 107 (2023) 9, 092001
B^0	$\psi_D + \Xi_c^0$	O _{cd}	2807.76	
B ⁰	$\psi_D + \Lambda_c^+ + z$	$\pi^ O_{cd}$	2853.60	
B^+	$\psi_D + p$	O_{ud}	4341.05	
B^+	$\psi_D + \Sigma^+$	O_{us}	4089.95	
B^+	$\psi_D + \Lambda_c^+$	O_{cd}	2992.86	
B ⁺	$\psi_D + \Xi_c^+$	O_{cs}	2810.36	

- ψ_D decay into stable dark sector particles producing the relic abundance we see today;
- Kinematic constraints require that the ψ_D mass lies between 0.94 4.34 GeV/c²
- Need to explore channels which have access to all operators $O_{i,j} = (\psi_D b) (q_i q_j) (i = u, c and j = d, s);$
- Flavor constraints imply that only one operator can be active in the early universe, one dominates, not a combination of operators.

Initial State	Final State	Operators	∆M (MeV/c²)	BABAR Results
B ⁰	$\psi_D + \Lambda$	0 _{us}	4163.95	Phys.Rev.D 107 (2023) 9, 092001
B^0	$\psi_D + \Xi_c^0$	O _{cd}	2807.76	
B ⁰	$\psi_D + \Lambda_c^+ + \pi^-$	O _{cd}	2853.60	
B^+	$\psi_D + p$	O_{ud}	4341.05	Phys.Rev.Lett. 131 (2023) 20, 201801
B^+	$\psi_D + \Sigma^+$	O_{us}	4089.95	
B^+	$\psi_D + \Lambda_c^+$	O _{cd}	2992.86	
B^+	$\psi_D + \Xi_c^+$	O _{cs}	2810.36	

- ψ_D decay into stable dark sector particles producing the relic abundance we see today;
- Kinematic constraints require that the ψ_D mass lies between 0.94 4.34 GeV/c²
- Need to explore channels which have access to all operators $O_{i,j} = (\psi_D b) (q_i q_j) (i = u, c and j = d, s);$
- Flavor constraints imply that only one operator can be active in the early universe, one dominates, not a combination of operators.

092001
) 20 <i>,</i> 201801

The BABAR Experiment

- For overview of experiment: Nucl. Instrum. Meth. A 729, 615 (2013).
- Asymmetric e^+e^- collider with $\sqrt{s} = 10.58 \text{ GeV}/c^2$ i.e. $\Upsilon(4S)$ resonance: 9 GeV electrons collide with 3 GeV positrons.
- Total luminosity: 431 fb⁻¹ (4.7 x 10⁸ $\overline{B}B$) on peak.

Caltech

Detectors:

- Reconstruct tracks: Silicon Vertex Tracker (SVT) + 40-layer Drift Chamber (DCH), in 1.5-T solenoid.
 - Momentum resolution = 0.47% at 1 GeV/c
- Measure energy: Electromagnetic Calorimeter (EMC)
 - Energy resolution = 3% at 1 GeV.
- PID:
 - Identify charged pions, kaons and electrons using Ring Imaging Cherenkov detector (DIRC) + ionization loss measurements in the SVT and DCH.
 - Instrumented flux return of solenoid used to identify muons.

Method: Event Reconstruction & Pre-selection

Hadronic recoil tagging method used to reconstruct event.

- B-tag = Fully reconstructed Standard Model decay mode;
- **B-sig** = Potential for signal, search here for missing mass.

398 fb⁻¹ used in final analysis

Caltech

B-tag candidate must have:

centre-of-mass energy within range of the CM beam energy:
$$\Delta E = E_{beam} - E_{B_{tag}}$$

centre-of-mass energy within range of the CM beam energy: $m_{ES} = \sqrt{E_{beam}^2 - p_{B_{tag}}^2}$

Method: Signal & Background

In the final analysis, yields were found via a data-driven Poisson counting method, with background and signal regions defined from the study of the background and signal MC simulations:

Standard Model Backgrounds:

- $q\bar{q}$ (modelled using JETSET);
- $B\overline{B}$ (modelled using EvtGen).

Signal:

Used EvtGen to simulate events for 8 signal masses for each channel;

Analysis Method:

- Samples passed through full reconstruction and determine efficiency and resolution was determined and fit;
- Functional forms of fit used to extract resolution and efficiency for any given ψ_D mass scan across entire mass range.

Method: Further Selections

Further signal selections are channel dependent:

- For the *p* channel:
 - BABAR proton PID can be used to identify proton candidate;
 - signal side must have + charge and only one charged particle.

• For the Λ channel:

- one Λ candidate in the B-sig;
- $\Lambda \rightarrow p\pi$ selected, so two charged tracks required on the signal side;
- significance of the Λ decay length (α_{Λ}) > 1.0;
- four-momentum kinematic fit χ^2 of Λ reconstruction \leq 100.
- For both cases further signal and background separation found using a Boosted Decision Tree custom to each channel.
 - *p* cut at v_{BDT} > 0.95 results in signal purity > 99 %;
 - Λ cut at v_{BDT} > 0.75 results in signal purity > 99 %.

Method: Final Analysis

Final analysis proceeds by:

- reconstructing ψ_D from missing energy 4-vector on signal side;
- scanning across mass range, with step size equivalent to σ at that mass;
- extracting resolution (σ) and efficiency (ε_{MC}) from fits to MC;
- estimating signal and backgrounds in data using definitions from MC study.

Rolke profile likelihood method is then used to obtain upper limits on BSM branching fractions.

Results

Applied result to a few specific models:

- World-leading result for $B^0 \rightarrow \psi_D + \Lambda$, improving on previous result and further constraining model;
- First direct search for $B^+ \rightarrow \psi_D + p$ places tight constraints on specified model.

Parameter space vastly reduced, almost excluded for some operators.

Must explore additional operators to fully explore this model.

Results

Given that all we are looking for is missing mass in the final state, we could apply our search to any such model:

- Extended search to provide first limit on RPV SUSY model described in JHEP 2023 (02 224 (2023)).
- First limits on this SUSY model for both channels.

Dark Matter and Baryogenesis at BABAR – Sophie Middleton – smidd@caltech.edu

Summary

Results presented in search for model explaining DM + BAU:

- BABAR has 398 fb⁻¹ of $B\overline{B}$ data making it an excellent way to explore this model;
- Scanning method allowed improved limits on $B^0 \rightarrow \psi_D + \Lambda$ channel;
- First direct limits for $B^+ \rightarrow \psi_D + p$ channel;
- BABAR soon to publish third analysis: $B^+ \rightarrow \psi_D + \Lambda_c^+$;
- Large amounts of parameter space reduced, model not fully excluded until all operators are explored;
- Results applied to SUSY model, providing first direct constraints on that model too;
- Results can also apply to other models with missing energy in final state e.g. those invoking charged B-Mesogenesis (*Phys Rev. D* 105, 055024 (2022)).

Thank You for Listening, Any Questions?

Extra things which didn't fit

MVA: Proton

The set of quantities input into out MVA:

- the hadronic decay channel of B-meson tag
- > the fraction of B-tag mesons that are correctly reconstructed for a given decay mode
- the integrated purity of the tag decay mode
- b the difference of beam energy and the reconstructed B-tag energy
- recoil B-meson mass distribution
- the B-tag thrust axis is defined as the axis which maximizes the longitudinal momenta of all the particles for B-tag reconstruction
- number of neutral particles in the signal side
- the number of piO candidates on the signal side
- the polar angle of the missing momentum vector recoiling against the B-tag meson and the signal candidate
- > the total extra neutral energy on the signal side in the center-of-mass frame
- > the ratio of the second to zeroth Fox-Wolfram moment for all tracks and neutral clusters
- the cosine of the thrust vector

Dark Matter and Baryogenesis at BABAR – Sophie Middleton – smidd@caltech.edu

(1/N) dN / 0.011

Caltech

Input variable: RBMes

Input variable: RBDelE

22

MVA: Lambda

The set of quantities input into out MVA:

- > the hadronic decay channel of B-tag meson
- the fraction of B-tag mesons that are correctly reconstructed for a given decay mode
- the integrated purity of the tag decay mode
- b the difference of beam energy and the reconstructed B-tag energy
- recoil B-meson mass distribution
- > the B-tag thrust axis is defined as the axis which maximizes the longitudinal momenta of all the particles for B-tag reconstruction
- number and net charge of the charged
- tracks in the signal B-sig meson side
- three momenta of the signal B-sig candidate
- number of neutral particles in the signal side
- the number of piO candidates on the signal side
- > the total extra neutral energy on the signal side in the center-of-mass frame
- the polar angle of the missing momentum vector recoiling against the B-tag meson and the signal candidate
- The significance of the Lambda decay length
- > The chi-2 of the Lambda fit

MVA: Lambda

NP (N/1)

00,00%

Caltech

Input variable: totErgNeut

(1/N) dN/ 0.119

2.5

1.5

0.5

014

0.1

0.08 0.06

0.04

0.02

20

40

60

80

lambdaChi2F

(1/N) dN/ 2.54 0.12 15 2

bdaChi2F

2.5 3 3.5 4 4.5

totErgNeut

Dark Matter and Baryogenesis at BABAR – Sophie Middleton – smidd@caltech.edu

ALEPH Indirect Constraints

Asymmetry

FIG. 3. Contour lines for the minimum $B \to \mathcal{B} + \psi_{DM} + \mathcal{M}$ branching ratio required for baryogenesis and dark matter generation as a function of the semi-leptonic asymmetries \mathcal{A}_{SL}^q in \mathcal{B}_q^0 decays. The red contours show the relevant parameter space in which baryogenesis can successfully occur. The black rectangle corresponds to the SM prediction for \mathcal{A}_{SL}^q , and the current world average is shown as the orange contour. The grey line corresponds to the region $\mathcal{BR}(B \to \mathcal{B} + \psi_{DM} + \mathcal{M}) > 0.5\%$, disfavored by a search for ALEPH [5]. This figure is taken from Ref. [1].

New Particles

Field	Spin	Q_{EM}	Baryon no.	\mathbb{Z}_2	Mass
Φ	0	0	0	+1	$11-100{ m GeV}$
Y	0	-1/3	-2/3	+1	$\mathcal{O}(\mathrm{TeV})$
ψ	1/2	0	-1	+1	$\mathcal{O}({ m GeV})$
ξ	1/2	0	0	-1	$\mathcal{O}({ m GeV})$
φ	0	0	-1	-1	$\mathcal{O}({ m GeV})$

TABLE I. Summary of the additional fields (both in the UV and effective theory), their charges and properties required in our model.