

The Light Dark Matter eXperiment at 8 GeV

Erik Wallin (Lund University) erik.wallin@cern.ch

LDMX is a proposed fixed-target experiment, sensitive to missing momentum and missing energy, to search for light DM (and more!).

LDMX wants an electron beam with:

- Low current
- High repetition rate

We can kick out electrons *between* the bunches delivered for photon physics, at SLAC's LCLS-II accelerator! For this, the Linac to End Station A (LESA) is being constructed.

LCLS-II currently delivers 4 GeV electrons, but an accelerator upgrade to 8 GeV is imminent.

(modified from arXiv:2205.13215)

Snapshot: The Wide Physics Potential of LDMX

- Other mediators
- Millicharged particles
- inelastic DM (iDM)
- SIMPs
- Freeze-in DM
- Visible signatures (e.g. visibly decaying dark photons or ALPs)

Dark Matter, Millicharges, Axion and Scalar Particles, Gauge Bosons, and Other New Physics with LDMX: Phys. Rev. D 99, 075001 (arXiv:1807.01730)

• Viewing DM as a **thermal relic** from the early universe is a predictive assumption, which **narrows the large possible mass range of DM**.

- Viewing DM as a thermal relic from the early universe is a predictive assumption, which narrows the large possible mass range of DM.
- Assumption: A light feebly-interacting mediator between the SM and some dark sector. These light mediators allows for DM masses below the Lee-Weinberg bound on the classical WIMP range. Relatively unconstrained region so far!

Benchmark model: Massive **dark photon mediator**, mixes with the SM (hyper/EM)charge.

Thermal targets, for an A' mediator, in reach at accelerators!

Relativistic production at accelerators is **not very sensitive to the spin-structure** of the DM particle.

⁽LDMX initial design study: arXiv:1808.05219)

Electrons scattering on heavy tungsten nuclei

• 'Dark' bremsstrahlung production channel

Targeting parameter space where the A' decays to DM.

Not considering decays back into SM particles. (Separate studies for *visible* signatures underway!)

Missing momentum and missing energy

The complete 8 GeV run of LDMX expects 10¹⁶ electrons on target (EoT), in **blue**. Unprecedented reach to the thermal targets!

But, the reach is highly dependent on low background and controlled background uncertainties.

2×10¹⁴ EoT simulation study at 8 GeV: <u>10.1007/JHEP12(2023)092</u> (arXiv 2308.15173v2)

LDMX aims to veto every background event, but the background has large variety.

(Normal) Bremsstrahlung from electrons scattering in the target can undergo:

- Muon-conversion
- Photo-nuclear reactions

inside either the target or ECal material.

Notably, photo-production of single neutrons and kaons is challenging.

No fundamentally irreducible backgrounds, that do not have veto handles in the experiment, at relevant rates.

Sub-detectors borrow technology from other existing experiments.

(10.1007/JHEP12(2023)092, arXiv:2308.15173v2)

Tagger and Recoil Trackers

Measures the missing momentum of the recoil electron.

For background reactions in the target, the track multiplicity in the recoil tracker may be used as a veto.

Tagger and Recoil Trackers

Measures the missing momentum of the recoil electron.

For background reactions in the target, the track multiplicity in the recoil tracker may be used as a veto.

Sensors from the HPS experiment's Silicon Vertex Tracker.

Silicon module from the HPS experiment (from https://pos.sissa.it/167/032/pdf)

Photo-nuclear Backgrounds

Missing energy in the ECal is a trigger condition.

But, photo-nuclear final-states may appear with missing energy.

Photo-nuclear Backgrounds

Missing energy in the ECal is a trigger condition.

But, photo-nuclear final-states may appear with missing energy.

Solution: train BDT/neural-net on features in the granular ECal, to see activity in the region the bremsstrahlung photon should hit.

(10.1007/JHEP12(2023)092, arXiv:2308.15173v2)

Erik Wallin, erik.wallin@cern.ch

Photo-nuclear Backgrounds

Missing energy in the ECal is a trigger condition.

But, photo-nuclear final-states may appear with missing energy.

Solution: train BDT/neural-net on features in the granular ECal, to see activity in the region the bremsstrahlung photon should hit.

Based on CMS' Si-W High-Granularity Calorimeter.

~60 cm

(image source)

16

Neutral Hadrons

Neutrons produced in photo-nuclear reactions may pass through the ECal undetected.

Instead, they should be caught by the surrounding **hadronic calorimeter**.

Neutral Hadrons

Neutrons produced in photo-nuclear reactions may pass through the ECal undetected.

Instead, they should be caught by the surrounding **hadronic calorimeter**.

Steel-scintillator calorimeter, borrowing design from the Mu2e experiment's cosmic ray veto, and using CMS' HGCROC for read-out.

HCal Prototype

Prototype slice was tested at CERN's East Area in 2022, now waiting to be tested at SLAC.

Erik Wallin, erik.wallin@cern.ch

Simulation representative of 2×10¹⁴ electrons on target (EoT), at 8 GeV, without pile-up.

Cut flow:

- 1. *Missing energy* (online/offline) and *missing momentum* (offline)
- 2. ECal energy deposits must only resemble a single electron shower
- 3. No activity in the HCal
- 4. Tracking in ECal to remove the rarest photo-nuclear backgrounds

	Photo-nuclear		Muon conversion	
	Target-area	ECal	Target-area	ECal
EoT Equivalent	2.00×10^{14}	2.00×10^{14}	2.00×10^{14}	2.00×10^{14}
Trigger (front ECal energy < 3160 MeV)	$7.57 imes 10^7$	4.43×10^8	2.37×10^7	8.12×10^7
Total ECal energy $< 3160 \text{ MeV}$	2.73×10^7	7.27×10^7	$1.76 imes 10^7$	$6.06 imes 10^7$
Single track with $p < 2400$ MeV/c	$3.03 imes 10^6$	6.64×10^7	5.32×10^4	5.69×10^7
ECal BDT (85% eff. $m_{A'} = 1$ MeV)	1.50×10^5	1.04×10^5	< 1	< 1
HCal max $PE < 8$	< 1	2.02	< 1	< 1
ECal MIP tracks = 0	< 1	< 1	< 1	< 1

(10.1007/JHEP12(2023)092, arXiv:2308.15173v2)

No background remaining!

Zero-background veto has been established for a (pile-up free) sample of 2×10^{14} electrons on target.

LDMX has promising reach for this common benchmark light dark matter model!

What's next for LDMX?

The construction of the beamline to LDMX is planned to complete in 2025, and already this year we aim to perform beam characterisation with some LDMX sub-systems.

Test beams of the HCal and trigger-scintillator detectors were performed in 2022, and more are planned at SLAC next year with additional sub-systems tested, placed at LDMX's final position.

Currently we are working on a design report, and ultimately plan to start construction of LDMX in late 2026/2027.

(10.1007/JHEP12(2023)092, arXiv:2308.15173v2)

Summer Reading

LDMX initial design study: <u>arXiv:1808.05219</u>

4 GeV Veto Study: <u>10.1007/JHEP04(2020)003</u>, <u>arXiv:1912.05535</u>

8 GeV Veto Study: <u>10.1007/JHEP12(2023)092</u>, <u>arXiv:2308.15173v2</u>

Lepton-Nucleus Cross Section Measurements for DUNE with the LDMX Detector: <u>10.1103/PhysRevD.101.053004</u>, <u>arXiv:1912.06140</u>

Testing GeV-Scale Dark Matter with Fixed-Target Missing Momentum Experiments: <u>10.1103/PhysRevD.91.094026</u>, <u>arXiv:1411.1404</u>

Accelerating the Discovery of Light Dark Matter: <u>10.1103/PhysRevLett.115.251301</u>, <u>arXiv:1505.00011</u>

Dark Matter, Millicharges, Axion and Scalar Particles, Gauge Bosons, and Other New Physics with LDMX: <u>10.1103/PhysRevD.99.075001, arXiv:1807.01730</u>

Office of Science

Thanks!

Office of Science

Bonus Slides

Crafoord foundation

LDMX Simulation

Erik Wallin, erik.wallin@cern.ch

	Photo-nuclear		Muon conversion	
	Target-area	ECal	Target-area	ECal
EoT Equivalent	8.99×10^{14}	1.98×10^{14}	9.45×10^{15}	2.40×10^{15}
Trigger (front ECal energy < 3160 MeV)	$3.40 imes 10^8$	$4.39 imes 10^8$	1.12×10^9	$9.73 imes 10^8$
Total ECal energy $< 3160 \text{ MeV}$	1.23×10^8	7.19×10^7	8.29×10^8	7.27×10^8
Single track with $p < 2400 \text{ MeV/c}$	$1.36 imes 10^7$	6.57×10^7	$2.51 imes 10^6$	6.82×10^8
ECal BDT (85% eff. $m_{A'} = 1 \text{ MeV}$)	$6.76 imes 10^5$	1.03×10^5	2.0	5.0
HCal max $PE < 8$	0	2.0	0	3.0
ECal MIP tracks = 0	0	0	0	0