Status of the LUX-ZEPLIN experiment

A direct search for dark matter

18th July 2024 Nicolas Angelides IMPERIAL

(on behalf of the LZ Collaboration)

America Europe Asia Oceania

- **Black Hills State University**
- **Brandeis University**
- **Brookhaven National Laboratory Brown University**
- Fermi National Accelerator Lab.
- Lawrence Berkeley National Lab.
- Lawrence Livermore National Lab.
- Northwestern University
- Pennsylvania State University
- SLAC National Accelerator Lab.
- South Dakota School of Mines & Tech
- South Dakota Science & Technology Authority
- Texas A&M University
- University of Albany, SUNY
- University of Alabama
- University of California Berkeley
- University of California Davis
- University of California Los Angeles
- University of California Santa Barbara
- University of Maryland
- University of Massachusetts, Amherst
- **University of Michigan**
- **University of Rochester**
- University of Wisconsin, Madison

38 Institutions

250 scientists, engineers, and technical staff

Brown University - June 2024

- **Edinburgh University**
- Imperial

SANFORD

RESEARCH

FACILIT

UNDERGROUND

- Royal Holloway University of London
- STFC Rutherford Appleton Lab
 - **University of Bristol**

- University College London
- University of Liverpool
- University of Oxford
- University of Sheffield
- LIP Coimbra
- University of Zurich

- University of Sydney
 - **Center for Underground** Physics

Science and

Technology

Facilities Council

Swiss National **Science Foundation**

nstitute for Basic Science

No WIMPs Observed

Yet...

- How we got here?
- What now?
- The future 🥖

First Science Run (2022) 90% CL upper limit for Spin Independent WIMP-nucleon scattering

SURF Lead, SD

4850 ft. below

ground

The LZ experiment

Multi-detector system:

Xe TPC -7 tonnes of LXe -1.5 m tall and wide

Xe Skin

-2 tonne LXe, optically isolated -Anticoincidence mostly for γ-rays

Outer detector (OD)

-17 tonne GD-loaded liquid scintillator -Anticoincidence mostly for neutrons

Operating in the Davis Cavern

S2

Discrimination & Calibration

First science run

- 60 days
- 335 Events (after all cuts)
- 5.5 tonne fiducial
- >97% PMTs operational
- Ar-37 contribution has decayed away

99.9% rejection of ERs below the NR median & 88% n-tagging efficiency (AmLi)

Background Model Fit

For all tested WIMP masses, best fit is zero events

Source	Expected Events	Fit Result
β decays + Det. ER	215 ± 36	222 ± 16
$ u \; { m ER}$	27.1 ± 1.6	27.2 ± 1.6
127 Xe	9.2 ± 0.8	9.3 ± 0.8
124 Xe	5.0 ± 1.4	5.2 ± 1.4
$^{136}\mathrm{Xe}$	15.1 ± 2.4	15.2 ± 2.4
${}^{8}\mathrm{B}~\mathrm{CE} \nu \mathrm{NS}$	0.14 ± 0.01	0.15 ± 0.01
Accidentals	1.2 ± 0.3	1.2 ± 0.3
Subtotal	273 ± 36	280 ± 16
37 Ar	[0, 288]	$52.5^{+9.6}_{-8.9}$
Detector neutrons	$0.0^{+0.2}$	$0.0^{+0.2}$
$30{ m GeV/c^2}~{ m WIMP}$		$0.0^{+0.6}$
Total	_	333 ± 17

More info in the next talk (Dan Kodroff)

PhysRevLett.131.041002

No WIMPs Observed

Yet...

- How we got here?
- What now?
- The future 🥖

First Science Run (2022) 90% CL upper limit for Spin Independent WIMP-nucleon scattering

Keep taking good data

Ζ

- No major down times since first science run
- Purity maintained well above requirements
- Regular Calibrations (calibration overview: <u>arXiv:2406.12874v2</u>)

No Dark Matter Observed Yet...

- How we got here?
- What now?
- The future

The future of LZ

- 1000 liveday exposure goal, only 60 published so far)
- Keep expanding physics output
- Keep improving analysis

New WIMP search results by the end of 2024

Beyond LZ

Rutherford Appleton Lab, 2023

XENON + LZ + DARWIN collaborations Aim to build the definitive rare event observatory

Thank you

Back-up

WIMP Scattering

Standard Halo Model: MB velocity distribution @ 0.3GeV/cm³

Small recoils O(10 keV) \rightarrow Need low threshold

A few events per year → Need lots of target mass

Coincidence Vetoes

LXe Skin:

- 2t of LXe
- 1" & 2" PMTs
- Optically isolated
- Veto γ-rays

The Outer Detector (OD):

- 17t of Gd-doped liquid scintillator in acrylic
- 120x 8" PMTs
- Veto γ-rays and neutrons

88% neutron tagging efficiency

Possible contaminants

- Uranium and Thorium
 - $\circ \quad \text{Produce } \alpha, \beta, \text{ and } \gamma$
 - \circ Secondary neutron production through $\alpha\text{-}n$
 - Produce Rn which, as a gas, diffuses
- Krypton and argon dissolved in xenon
 - $\circ \quad \beta \text{ and } \gamma \text{ decaying isotopes}$
- Other radioactive elements— ⁶⁰Co and ⁴⁰K are most common
- Cosmic activation
- Cavern wall radioactivity

Mitigation

- Enormous screening program for all materials
 - Ge detectors, ICPMS, Rn emanation, Neutron activation analysis
- Clean Assembly
 - Rn-reduced cleanroom (and dust reduction)
- Xe purification
 - ³⁹Ar and ⁸⁵Kr removal
 with charcoal
 chromatography
 - In-situ

HPGe counters at SURF

Timeline

Radon reduced cleanroom at SURF (surface) at < 4 mBq/m³ Operated as Class 100 (ISO 5)

Science Run 1

- Livetime 60 days
- PMTs: >97% operational throughout run
- Liquid: 174.1 K (0.02%)
- Gas: 1.791 bar(a) (0.2%)
- Gas circulation: 3.3t/day
- Drift field: 193 V/cm
 (4% in fiducial volume)
- Extraction: 7.3 kV/cm in
 Gas (8 kV gate-anode ΔV)

Calibrations

- Spatial non-uniformity corrections
- ER band response
- NR band response
- Veto efficiencies
- Data selection efficiency

ER:

- 83mKr: monoenergetic ERs, 32.1 keV and 9.4 keV
- 131mXe: monoenergetic ER, 164 keV
- CH3T (tritium): continuum betas, 18.6 keV
- Activation lines

NR:

- Deuterium-deuterium (DD): triggered 2.45 MeV neutrons
- AmLi: continuum neutrons, isotropic
- Alphas
- And more (220Rn, YBe, 252Cf, 22Na, 228Th, etc)

Looking for WIMPs

- One S1 (photons) followed by one S2 (drifted electrons) with no activity in the veto
- Pulses are classified based on their parameters (pulse shape, area and hit pattern)

All Single Scatters

- Events surviving all selections
- × Skin-prompt-tagged events
- OD-prompt-tagged events

After FV & Veto Cuts

Ζ

Accidental Signals

Isolated S1s

PMT dark count pile-up Events in gas phase Cherenkov light in PMTs or PTFE Fluorescence of PTFE Light leaks from outside TPC Charge-insensitive regions near walls Charge-insensitive regions below cathode Mimics a real scatter

Isolated S2s

Events in gas phase
Events in liquid above gate grid
Electron emission from grids
Sub-S1-threshold ER events
Delayed electrons after S2s
Radioactivity from gate and cathode grids

Electron & Photon trains

Analysis hold off after S2s which is proportional to the size of the S2 (big impact on livetime - 29.8% cut)

Data Quality Cut Example

Data Quality

Requiring 3-fold coincidence dominates lowest energy threshold 50% efficiency at 5.3 keV NR Ζ

Backgrounds

~Flat energy spectra

within ROI

Dissolved radiogenic contaminants

- ²¹⁴Pb (²²²Rn daughter)
- ²¹²Pb (²²⁰Rn daughter)
- ⁸⁵Kr

¹³⁶Xe (2νββ)

Solar neutrinos (ER)

- pp
- ⁷Be
- ¹³N

ER backgrounds Dominated by ²¹⁴Pb and ³⁷Ar

Mono-energetic spectra

dissolved electron captures

³⁷Ar (activation)

¹²⁷Xe

¹²⁴Xe (double e-capture)

NR backgrounds:

- Neutron emission from
 - spontaneous fission and (α ,n)
- ⁸B solar neutrinos

Expected in ROI:

ER: 276 + [0, 291] for 37Ar NR: 0.15

Radon

β-decay with **naked** branch (no accompanying gamma) resulting in **low energy recoils**

Argon-37

- Electron capture, t_{1/2} = 35 d, monoenergetic 2.8 keV ER deposition
 Produced by cosmic spallation of natural xenon
- Activity constrained ³⁷Ar activity based on Xe delivery schedule

Neutrons

- Neutron captures in the OD produce γ -ray up to 8.5 MeV
- Measured neutron tagging efficiency: 88.5±0.7%
- In situ constraint on neutron background: 0+0.2 neutron events

BG Model

NR Band

SR1 ROI & Data Quality Cuts

Improve the analysis: Salting

- Overcome human biases in the analysis of the data (Bias Mitigation)
- Assemble salt event from calibration data and inject
- Salt all science data
 - WIMP salt
 - High energy salt
 - Light WIMPs/8B salt
- Unsalt after freezing analyses

Improve the analysis: Statistics

- Using public library Flamedisx: expands dimensionality and complexity
- Offers an alternative way of treating shape-varying parameters to template morphing (Python-based and GPU-scalable)
- Moving towards combined likelihood with first science run data and useful sidebands (tagged BGs)

