

Status on COSINE-100 experiment

In-Soo Lee

Center for Underground Physics (IBS)

On behalf of the COSINE-100 collaboration

July 18th, 2024

Motivation-DAMA/LIBRA

- DAMA/LIBRA experiment
 - Search for **Dark matter (DM)** annual modulation signature
 - Using 25 × 9.7 kg NaI(Tl) detectors
 - Claim an observation of the DM (WIMP modulation signal) at 13σ C.L. (2-6 keV)
 - Amplitude : 0.00996 ± 0.0007 counts/day/kg/keV
 - Phase = 145 ± 5 days
 - Period = 0.997 ± 0.0008 year

- No other experiment has succeeded direct detection of DM except for DAMA/LIBRA.
 - Is NaI(Tl) special for DM interaction?

COSINE-100 experiment

- Joint collaboration of **DM-ICE** & **KIMS**
- * ~50 collaborators in 18 institutes
- To confirm **DAMA/LIBRA's claim** using same target material, **NaI(Tl)**

COSINE-100 experiment

- 8 NaI(Tl) Crystals (106 kg)
 - Higher light yield (15 PE/keV) than DAMA/LIBRA (5-10 PE/keV)
- Shielding structure
 - 2200-L LAB-based Liquid scintillator(LS)
 - 4π plastic scintllator
 - **3-cm** thick **copper box**
 - 20-cm thick lead castle

Data exposure

- Operation from Sep. 2016 to Mar. 2023
 - Physics run : 6.12 years
 - Good data : 5.84 years

Data exposure

- Operation from Sep. 2016 to Mar. 2023
 - Physics run : 6.12 years
 - Good data : 5.84 years

Data exposure

Main analysis is being performed with SET3

- Multivariable analysis with pulse-shape parameters
 - Meantime, likelihood parameters (SET2)
 - + Fast Fourier Transformation parameter(for SET3)
- 1 keV → 0.7 keV

- Multivariable analysis with pulse-shape parameters
 - Meantime, likelihood parameters (SET2)
 - + Fast Fourier Transformation parameter(for SET3)
- 1 keV → 0.7 keV
- Background modeling
 - Considers updated nonproportionality of NaI(Tl)

- Multivariable analysis with pulse-shape parameters •
 - Meantime, likelihood parameters (SET2) •
 - $F_{\mathcal{L}}^{N1} = \frac{\ln \mathcal{L}_{\text{FFT}}^{N1} \ln \mathcal{L}_{\text{FFT}}^{S}}{\ln \mathcal{L}_{\text{FFT}}^{N1} + \ln \mathcal{L}_{\text{FFT}}^{S}}$ + Fast Fourier Transformation parameter (for SE13)
- 1 keV → 0.7 keV
- **Background modeling** •
 - Considers updated nonproportionality of NaI(Tl)

- Multivariable analysis with pulse-shape parameters
 - Meantime, likelihood parameters (SET2)
 - + Fast Fourier Transformation parameter (for SE13)
- 1 keV → 0.7 keV
- Background modeling
 - Considers updated nonproportionality of NaI(Tl)

- Quenching factor of NaI(Tl)
 - Update low energy region

WIMP Extraction

- Analyze the SET3 data with new event selection and new background modeling
- **O(10) improvement** of SI WIMP-proton cross-section **limit** from **previous result**

Using full COSINE-100 data (~6 years)

- Using SET 3 event selection and modeling
- Calibration method to test DAMA's claim
 - Calibration for Electron Recoil (ER)
 - Calibration for Nuclear Recoil with new quenching factor (NR)

Using full COSINE-100 data (~6 years)

- Using SET 3 event selection and modeling
- Calibration method to test DAMA's claim
 - Calibration for **Electron Recoil (ER)**
 - Calibration for Nuclear Recoil with new quenching factor (NR)
- Applying **full model** of **time dependent background** component

$$\begin{split} R^{i}(t|S_{m},\alpha^{i},\beta_{k}^{i}) &= \alpha^{i} + \sum_{k=1}^{N_{bkgd}} \beta_{k}^{i} e^{-\lambda_{k}t} + S_{m}\cos\left(\omega(t-t_{0})\right) \\ & \text{Constant from long-lived backgrounds} \\ & \text{Exponential decays from short-lived} \\ & \text{Modulation signal} \end{split}$$

Using full COSINE-100 data (~6 years)

- Using SET 3 event selection and modeling
- Calibration method to test DAMA's claim
 - Calibration for Electron Recoil (ER)
 - Calibration for Nuclear Recoil with new quenching factor (NR)
- Applying full model of time dependent background component

15

Using full COSINE-100 data (~6 years)

- Using SET 3 event selection and modeling
- Calibration method to test DAMA's claim
 - Calibration for Electron Recoil (ER)
 - Calibration for Nuclear Recoil with new quenching factor (NR)
- Applying full model of time dependent background component

Other DM scenarios

- Performed with SET2 data
- No dark matter signal

Bosonic Super WIMP

(a) Pseudoscalar

10

10

What is next for COSINE-100?

• Spectral Analysis

Modulation analysis

• No DAMA-like signal in same target NaI(Tl) with COSINE-100 data

What is next for COSINE-100?

Spectral Analysis

Modulation analysis

COSINE-100Upgrade

For lower threshold!

- Enhance light yield of COSINE-100 crystals
 - Operate at -35°C environment
 - Upgrade encapsulation design
- Relocate COSINE-100 setup @ Yemilab
 - Newly constructed **underground laboratory** in Korea
 - Y2L→ Yemilab from 2023 to 2024 Front. Phys. 02 April 2024
 - 700 m \rightarrow 1000 m overburden
- Same shielding structure

COSINE-100 NaI(TI) crystals								
Crystal #	Size (diameter x length)	Light yield(PEs/keV)						
1	5.0" x 7.0"	14.9 ±1.5						
2	4.2" x 11.0"	14.6 ±1.5						
3	4.2" x 11.0"	15.5 ±1.5						
4	5.0" x 15.3"	14.9 ±1.5						
5	5.0" x 15.5"	7.3 ±0.7						
6	4.8" x 11.8"	14.6 ±1.5						
7	4.8" x 11.8"	14.0 ±1.4						
8	5.0" x 15.5"	3.5 ±0.3						

NaI(Tl) at -35°C

Astroparticle Physics 141 (2022) 102709

- Low temperature operation (at -35°C)
 - ~5% increased Light yields
 - ~9% increased alpha quenching

NaI(Tl) at -35°C

Astroparticle Physics 141 (2022) 102709

- Low temperature operation (at -35°C)
 - ~5% increased Light yields
 - ~9% increased alpha quenching

• The detector fridge room was prepared for COSINE-100U!

New encapsulation design

- Minimize optical coupling layer between PMT and crystal
 - 3 layers → 1-layer optical pad
- Teflon structure for stable optical contact
- **Copper case** for protection from outside
- Expect ~50% increase in light yield
 - 15 P.E. → >20 P.E.

- Machining crystal edge with light guide-like shape
 - 7 cm diameter = PMT photocathode size
 - Maximize light collecting

Nucl. Instrum. Meth. A 981, 164556 (2020) arXiv:2404.03691

New encapsulation assembling

Machining crystal edge

Assembling @glovebox (H₂O< 10 ppm)

New encapsulation performance

 Test performance in HQ testbench (On ground w/200 L LS)

• **Resolution** : 5.3 ±1.2% → 4.6 ±1.0% Light yield : 14.6 ± 1.5 → 21.0 ± 0.6 PE/keV

- Assembling for all crystals was finished!
 - Up to 45% light yield improvement
 - Resolution improved by ~10% @ 59.57keV

Status on COSINE-100U

• Y2L \rightarrow Yemilab (From Sep. 2023)

COSINE-100 decommissioning @Y2L

Shield installation in fridge room @ Yemilab

Status on COSINE-100U

• Y2L \rightarrow Yemilab (From Sep. 2023)

COSINE-100 decommissioning @Y2L

Shield installation in fridge room @ Yemilab

Plan for COSINE-100U

	2024-01	2024-02	2024-03	2024-04	2024-05	2024-06	2024-07	2024-08
Crystals	Assembling&Test							
Lead	Bottom	Side						
LS	PMTs ,LS production				Install	Physics		
Muon	Fix							run!!
Hardware					DAQ, PCs, HV, Cable, Monitoring			
Software	DAQ, production, monitoring							

Under preparation to start physics run in August!

Sensitivity estimation

Condition for upgrade COSINE-100 (COSINE-200)

- 1 year
- Light yields 22 P.E./keV
- COSINE-100 (R&D crystal) background
- No systematics

Summary

- COSINE-100 was designed to test the DAMA/LIBRA signal via the same target material, NaI(Tl) from Sep. 2016 to Mar. 2023
- Spectral Analysis
 - Improved WIMP-nucleon cross section using 3-years data
 - Investigation of various DM scenarios
- Modulation analysis
 - No DAMA like modulation with more than 3σ significance using full COSINE-100 data
- **COISNE-100U** experiment is being prepared using detectors with **enhanced light yields** detectors in newly constructed underground laboratory.
 - **40% light yield improvement** with new encapsulation technique.
 - Detector fridge room for **-35°C operation** is ready
- **COSINE-100U** operation will start in **August 2024** for searching low mass WIMP!

Back up

Annual modulation signal

Rate of WIMP elastic scattering

$$R \propto N_T \cdot \sigma_{\chi^N} \cdot \frac{\rho_{\chi}}{m_{\chi}} \int_{v_{min}} \frac{f(v)}{v} dv$$

- f(v) : WIMP velocity distribution
- vmin : minimum velocity for interaction
- ρ_{χ} : local WIMP density
- m_{χ} : WIMP mass

NaI(Tl) Dark matter search

COSINE-100 experiment-NaI(Tl)

- 8 low-background NaI(Tl) crystals with 106 kg in total
 - **U/Th/K level** is less than DAMA, but total alphas (²¹⁰Pb) are higher than DAMA.
 - Total **background** level is **2-3 times that of DAMA/LIBRA.**
 - Higher light yield (15 P.E./keV) than DAMA/LIBRA (5-10 P.E./keV)
 - Can make the threshold lower easily
 - Each crystal is **encapsulated** in **copper and quartz windows**.
 - Two 3-inch PMTs (R12669SEL) are attached to each crystal.
 - Quantum efficiency: 35% @ 420 nm

COSINE-100 experiment-Shielding

- Active veto
 - Liquid scintillator (LS)
 - 2200-L LAB-based LS
 - 5-inch PMT(R877) for LS detector
 - 4π Muon counter
 - 37 plastic scintillator panels
 - 2-inch PMT(H7195) for muon counter
- Passive veto
 - **3-cm** thick **copper box**
 - 20-cm thick lead castle
- Neutron monitoring
 - Fast neutron detector (Liquid Scintillator)
 - Thermal neutron detector (³He gas detector)

Liquid scintillator

Nucl. Instrum. Meth. A 106, 165431 (2021) Nucl. Instrum. Met<mark>l</mark>. A 851 103 (2017)

COSINE shielding structure

Event Selection (SET2)

- Event selection updated since Astropart. Phys 130, 102581 (2021)
- To select scintillation event from PMT-induced noise
 - Use pulse-shape parameters
 - Meantime, likelihood parameters
 - + Fast Fourier Transformation paramete r(for Set3)
- Multivariable analysis
 - BDT(SET2) → MLP(SET3) Boosted Decision Tree
 - 1 keV → 0.75 keV

Update Nonproportionality and Quenching factor of NaI(Tl)

COSINE-100 operation cont'd

Slow monitoring system

Yemilab @ Jeongseon

- Newly constructed underground laboratory at Jeongseon in 2022
 - 1000 m rock overburden
 - 3000 m³ experimental area

Front. Phys., 02 April 2024

Encapsulation

- Inner structure for PMT-crystal connection
 - Direct contact PMT and crystal with optical pad
 - PTFE body, Brass bolt
 - PMT base shield (PTFE)

Encapsulation cont'd

• Copper case

- Same as **NEON** experiment
- To prevent LS & air leak
 - **PTFE** Gasket
 - Cable gland

