

Latest results from the XENONNT

dark matter experiment

PIETRO DI GANGI

digangi@bo.infn.it

INFN

BOLOGNA

ICHEP 2024 PRAGUE 18 JULY 2024

on behalf of the XENON Collaboration

THE XENON COLLABORATION

Paving the way for direct dark matter detection since 20 years

THE XENON **PROJECT**

Direct DM search with LXe TPC

ENERGY RECONSTRUCTION from combined S1 and S2 signals

3D POSITION RECONSTRUCTION (x,y) from S2 hit pattern **z** from S1-S2 delay time

RECOIL TYPE

DISCRIMINATION

For ultra-low-background searches for ultra-rare events

700 t water contained ~10 x 10 m diameter x height 84 PMTs (8" Hamamatsu R5912-ASSY) Shares same water with NV but optically

H. H. H. Manageria and and the

MUON VETO

🕑 JINST 9 P11006

All detectors' materials are very carefully selected for excellent radiopurity 💦 🗗 EPJ C77, 890 📑 Eur. Phys. J. C (2022) 82:599

PIETRO DI GANGI | 🔀 XENON | ICHEP 2024 | 18 JULY 2024

XENON PURIFICATION

Liquid purification and cryogenic distillation

/ Eur. Phys. J. C 82, 1104 (2022)

Continuous online distillation ²²²Rn conc. (SR0): **1.8 µBq/kg** ²²²Rn conc. (SR1): **0.8 µBq/kg !** Was the dominant bkg in XENONIT

🕒 <u>EPJ C77, 275</u>

⁸⁵Kr CRYO-DISTILLATION

natKr/Xe concentration : <50 ppt
Made subdominant since XENONIT</pre>

ELECTRON LIFETIME

Removal of electronegative impurities GXe and LXe purification systems Electron lifetime achieved: **>30 ms !** Full TPC drift time: 2.2 ms

ER BACKGROUND LEVEL

Lowest background rate ever achieved in LXe-based dark matter detectors

PIETRO DI GANGI | 🔀 XENON | ICHEP 2024 | 18 JULY 2024

XENONNT **TIMELINE**

2 scientific runs completed

SCIENCE RUN 0

Jul 2021		Start of SRO
Nov 2021		End of SR0

SCIENCE RUN 1

May 2022	Start of SR1
Aug 2023	End of SR1

POST-SRI

2023	GdSO insertion in water
2023	Start of SR2

EXCELLENT STABILITY

PHOTOSENSORS

after 4 years of operation 478 of 494 PMTs still active (97%) with stable gain

SIGNAL RESPONSE

stability of both light and charge yields within 1%

SCIENCE RUN 2 ongoing

SEARCH FOR NEW PHYSICS IN ER DATA

THE RAREST PROCESS **EVER OBSERVED**

DEC discovered by XENONIT in 2019 Half-life: 2 • 10²² years

NEW CONSTRAINTS ON BSM PHYSICS

SOLAR AXIONS

NEUTRINO MAGNETIC MOMENT $\mu_v < 6.3 \bullet 10^{-12} \mu_B$

BOSONIC DARK MATTER Dark photons, axion-like particles

ALL LEADING LIMITS

observations

TESTING XENONIT EXCESS

EXCLUDED with ~4σ significance

Most likely XENONIT had a tiny tritium contamination

XENONnT took steps to reduce tritium outgassing

FIRST SEARCH FOR

WIMP DARK MATTER

🖹 Phys. Rev. Lett. 131, 041003

NO SIGNIFICANT EXCESS

Best-fit agrees with background

152 events in ER/NR region16 events in NR blinded region

	Nominal	Be	st Fit
	ROI		Signal-like
ER	134	135^{+12}_{-11}	0.92 ± 0.08
Neutrons	$1.1^{+0.6}_{-0.5}$	1.1 ± 0.4	0.42 ± 0.16
$CE\nu NS$	0.23 ± 0.06	0.23 ± 0.06	0.022 ± 0.006
AC	4.3 ± 0.9	$4.4^{+0.9}_{-0.8}$	0.32 ± 0.06
Surface	14 ± 3	12 ± 2	0.35 ± 0.07
Total Background	154	152 ± 12	$2.03\substack{+0.17\\-0.15}$
WIMP	-	2.6	1.3
Observed	-	152	3

11

PIETRO DI GANGI | 🔀 XENON | ICHEP 2024 | 18 JULY 2024

SEARCH FOR CEVNS

From solar ⁸B neutrinos

PIETRO DI GANGI | 🔀 XENON | ICHEP 2024 | 18 JULY 2024

SEARCH FOR CEVNS

Data analysis and results

DATA AGREE WITH SIGNAL + BACKGROUND EXPECTATION

	NOMINAL	FIT	FIT
	EXPECT.	BKG-ONLY	SIG+BKG
ER	0.7 ± 0.7	0.74	0.54
NR	0.5 ± 0.3	0.50	0.45
(SRO) AC	7.5 ± 0.5	7.55	7.36
(SR1) AC	18 ± 1	18.26	17.90
TOTAL BKG	26.4 ± 1.5	27.05	26.24
⁸ B CE <i>v</i> NS SIGNAL	12 ± 3	-	10.71
SIGNAL + BKG	38 ± 3	-	36.95

37 OBSERVED EVENTS

No significant deviation of background and signal models parameters

4-dimensional analysis space for discrimination of the dominant background from accidental coincidence (AC) of isolated S1 and S2 signals.

Analysis validated with ³⁷Ar calibration data (L-shell electron capture, 0.27 keV).

XENONNT MEASURED **CEVNS**

Paper in preparation

With more exposure, we will measure ⁸B solar neutrinos with higher significance and more precise constraint on their flux.

NV Gd-DOPED PHASE IN SR2

Further suppression of neutron background

THE FUTURE OF XENONNT AND BEYOND 🗰

XENONnT JUST GOT INSIDE THE NEUTRINO FOG

PHYSICS REACH OF LXe TPC

WIMP DARK MATTER Standard 3-fold Low mass 2-fold and S2-only

OTHER DM MODELS

Dark photons ALPs Planck mass

SOLAR NEUTRINOS ⁸B, hep, ⁷Be CE**v**NS pp elastic scattering

NEUTRINO NATURE

Neutrinoless double-beta decay Double electron capture Anomalous magnetic moment

ASTROPHYSICS

Supernova neutrinos (SNEWS) Atmospheric neutrinos GW multi-messenger

NEXT-GENERATION DETECTOR

~50 t LXe TARGET

R&D

Established XENON-LZ-DARWIN CONSORTIUM

QUICK SUMMARY

digangi@bo.infn.it | 🔀 XENON | ICHEP 2024 | 18 JULY 2024

INFN BOLOGNI

Credits: G. Bertone, ICHE7 2022

LXe PURITY IN XENONNT

STABILITY OF XENONNT IN SRO AND SRI

21

CALIBRATION OF TPC RESPONSE

 0.1367 ± 0.0010

 16.85 ± 0.46

SR0

Credit: Fei Gao, IDM 2024

SR1

Excellent match between Data and Model

NEST model is constrained by YBe data to predict the light and charge yield in the ⁸B CEvNS energy range at the XENONnT drift field

NEUTRINO-INDUCED NRs in Xe

CEVNS ANALYSIS VALIDATION WITH AR-37

AC SIDEBAND UNBLINDING

The S2 threshold is increased to 120 PE after sideband unblinding!

Science Run	Expectation	Observation	P-value (4D)	Deviation from expectation
SR0	122.7	121	0.33	-0.15 sigma
SR1	290.0	310	0.252	1.17 sigma

The remaining differences are considered potential systematical uncertainties! (<10%)

EFFICIENCY AND UNCERTAINTIES

CEVNS DISCOVERY POTENTIAL

We expect to see solar ⁸B neutrinos at >3(2) sigma significance with a probability of 0.48 (0.80), with a full 4-D analysis

UNBLINDED EVENTS

Credit: Fei Gao, IDM 2024

29

18 JULY 2024

UNBLINDED EVENTS

X, Y, and Z information are not considered in the likelihood analysis.

ANALYSIS PARAMETRS PULL

EVOLUTION OF SENSITIVITY TO CEVNS

The improvements in flux measurement are limited by uncertainties of the LXe response to nuclear recoils.

RN-222 LEVEL

ER CALIBRATION SOURCES

KRYPTON-83m

Injected every 14 days
 Spatial corrections:
 S1 LCE, S2 LCE, drift field distortion
 Validation of drift field COMSOL simulation

 Monoenergetic peak at 2.82 keV
 Low energy response and resolution with high statistics

Flat beta spectrum from Pb-212
 Cut acceptances estimation
 Energy threshold validation
 Used to define the blinding region

34

ER – NR BANDS CALIBRATION

ER BAND

Radon-220 (flat energy spectrum)

Ar-37 (peak at 2.8 keV)

NR BAND

AmBe (neutron source)

ER/NR bands separation Fraction of ER events below NR median = 1.1%

LOW-ENERGY ER SEARCHES (SRO)

Search for New Physics in Electronic Recoil Data from XENONnT XENON Collaboration, Phys. Rev. Lett. 129, 161805, arXiv:2207.11330 [hep-ex]

KSVZ 10-XENONnT [GeV⁻¹] 10 (This work) Significantly improved constraints on axion-gamma, axion-electron White and axion-nucleon couplings § 10^{−10} CAST $(m_a < 10 \text{ meV})$ HB stars TT 10^{-11} DFSZ (b) Neutrino magnetic moment (a) Solar axions 10^{-1} 10^{-13} 10^{-12} 10^{-11} (Jao 10^{-11} X-ray and gamma-ray ALP lifetime on lifetime $a \rightarrow yy$ $(\tau_{a \rightarrow vv} < 13.8 \text{ Gv})$ CDFX-1F 10^{-1} gae 10^{-1}

(c) ALPs DM

1

 10^{-}

 10^{-14}

NEUTRINO MAGNETIC MOMENT $\approx \mu_{\mu} < 6.3 \times 10^{-12} \mu_{R}$ The most stringent limit in any direct detection experiment

 10^{-10}

10⁻¹¹

 10^{-12}

 10^{-11}

 10^{-12}

 10^{-13}

10⁻¹⁴ ⊭

 10^{-15}

μ

AXION-LIKE PARTICLES AND DARK PHOTONS

Search for a peak found no significant excess

SOLAR AXIONS

- New stringent limits in the range 1-140 keV
- No limits at 41.5 keV as the Kr-83m rate is left unconstrained

PandaX-II

Borexino

Globular

Cluster

CDEX-1B

Gemma

XENON1T

(S1S2)

XENONnT

(This work)

ellar bounds

XENON1T

36

SD WIMP LIMITS (SRO)

Non-zero spin operator for ¹²⁹Xe and ¹³¹Xe, due to unpaired neutrons In general, more sensitive to neutron-spin coupling

NEUTRON VETO

≈ Radiogenic neutrons scatter in the TPC (potential NR background event) and escape into the Neutron Veto ≈ Neutrons captured in water by H (~ 200 μ s) → 2.2 MeV gamma emitted → Cherenkov light

High light collection efficiency required:
8" high-QE low-radioactivity PMTs
ePTFE coating >99% reflectivity
High water transparency

38

NEUTRON VETO CALIBRATION

AmBe calibration source placed close to cryostat (same signature of radiogenic neutrons from detector materials)

4.4 MeV gamma (γ) **emission** with **neutron** in about **50%** of cases

First **4.4 MeV** γ detected in **NV**, then coincidence requirement for **nuclear recoil** in **TPC**, hence search for **signals** from **neutron capture** in **NV**

Direct measurement of neutron tagging efficiency

After background subtraction, at **5-fold** coincidence, **5 PE** threshold, **600 µs** time windows: **(68 ± 3) %**

Average capture time in demi-water of about 180 µs

Highest neutron detection efficiency ever measured in a water Cherenkov detector

In Science Run 0, **time** window shortened to **250 µs** to **reduce** induced **dead time**

Then, neutron **tagging** efficiency is **(53 ± 3) %** with **1.6% livetime loss**

NEUTRON VETO IN SRO

Neutron background originated mostly from PMTs, cryostat and PTFE components

Signals in TPC can be attributed to **neutrons** from detector materials if, **differently** from WIMPs, **multiplesite** energy deposit occurred (**multiple scatter**)

4 events in the WIMP blinded region tagged by NV and excluded: 3 multiple scatter (MS) + 1 single scatter (SS)

In **agreement** with **MS/SS** ratio of about **2.5** obtained from MC and AmBe calibration data

Considering NV tagging efficiency of 53%, the total neutron expectation is 1.1^{+0.6}-0.5 events

This result is **6x higher** than **predictions** from **material screening** (ongoing **checks** to understand the discrepancy)

In SRO, NV had relevant role in **constraining** this specific **background** in a **data-driven** way

40

NV PERFORMANCE AFTER Gd INSERTION

AmBe calibration **source far** from **cryostat** (**50 cm**) to characterize NV **response** along time, **area spectrum** can be **modeled** with:

- 2.2 MeV peak (H capture) → 1 Gaussian with threshold
- 4.4 MeV peak (¹²C de-excitation) → 1 Gaussian with threshold
- About 8 MeV peak (Gd capture) → 2 Gaussians with threshold
- High energy tail (higher level ¹²C de-excitations or n captures on ⁵⁶Fe) → 2 Gaussians

Mean area and amplitude correspond to mean collected light (that depends on NV optical properties) and neutron captures

