

Light dark matter search at PandaX

Speaker: Minzhen Zhang

On behalf of PandaX collaboration

Shanghai Jiao Tong University

2024-07-18

思源•爱国荣

Introduction to PandaX experiment

Light dark matter search with commissioning run(Run0)

Run0+Run1 combined analysis

Introduction to PandaX experiment

Light dark matter search with commissioning run(Run0)

@Run0+Run1 combined analysis

Dark matter

Gravitational evidence:

- Rotation curves
- Gravitational lensing
- CMB

PandaX-4T experiment

Dual phase Xe time projection chamber(TPC)
Most sensitive at ~40 GeV WIMP dark matter mass with traditional S1-S2 analysis

Introduction to PandaX experiment

Light dark matter search with commissioning run(Run0)

@Run0+Run1 combined analysis

Light Dark Matter search

PandaX has achieved progress in various light dark matter(LDM) interaction

To improve sensitivity

- More exposure: Run1
- Lower threshold: low energy analysis

Boosted DM

Low energy analysis: Paired channel

Events with very small S1(2 ~ 3 hits on PMTs)

Solution Lower the energy threshold to 1keV, increase the sensitivity to light dark matter

Low energy analysis: US2 channel

9

Unpaired S2(US2): Events without physical S1

The energy threshold is further lowered to ~0.8keV

This report will focus on US2 analysis combining Run0 and Run1

Model the backgrounds different from paired analysis, and significantly increase sensitivity to DM-electron interaction

Introduction to PandaX experiment

Light dark matter search with commissioning run(Run0)

Run0+Run1 combined analysis

Data selection

Afterglow veto cuts:

- remove period after large signal(deadtime)
- remove volume near large S2
- Bad file: remove periods with high event rate or abnormal operation condition
- Fiducial Volume(FV): remove background events concentrated at edge of the detector

Off-PMT: remove the dysfunctional PMT region

	run0	run1	Total
Livetime[days]	64.6	93.5	158.1
FV mass[ton]	2.78	2.16	/
Exposure[ton·year]	0.49	0.55	1.04

Data selection

Region of interest: paired S1<=1hit, 4-8 electrons</p>

- Selection cuts: based on s2 shape and position reconstruction quality, mostly follow run0 cuts, but loosened for higher signal acceptance.
- Efficiency is given by MS(multi-scatter signal from nuclear recoil calibration) and WS(waveform simulation of signals)

MD Estimation

MD sample

- We find that MD rate is related with single electron(SE) rate, so we get MD samples from deadtime region where SE rate is very high
- The sample in deadtime is consistent with the MD events in livetime
- MD events in livetime are from high US2(2.5-3nE) rate runs

- Different small control regions divided by S2 charge and width give systematic error
- Spectrum with total statistic give the nominal value and statistical error

Estimation	Run0	Run1
Result	25 <u>+</u> 3	20 <u>+</u> 4
Statistical error	6.5%	6.4%
Systematic error	10.6%	16.9%

Cathode estimation

selection cut

selection cut with loose width cut

Cathode sample

Efficiency:

- Use paired cathode events as background sample
- Simulate physical events at the bottom of detector, these samples are consistent with paired cathode events
- To reduce spectrum statistical fluctuation, use the spectrum under a loose width cut, and then apply corresponding efficiency from waveform simulation to it

Cathode estimation

- Spectrum with different S1 range give systematic error
- Spectrum with total statistic give the nominal value and statistical error
- Difference of results given by efficiency from data and simulation give efficiency error

Estimation	run0	Run1
Result	100 <u>+</u> 24	104 <u>+</u> 21
Statistical error	12.4%	11.4%
Systematic error	18.1%	13.9%
Efficiency error	10.6%	9.4%
	//	V NIT SJIU

Physical events estimation

Solar neutrino can be a background component in DM searching(v floor/fog)

- Physical events in US2 mainly come from B8 solar neutrino coherent elastic neutrino nucleus scattering(CEvNS)
- Oue to loosened cuts, energy threshold is lowered to ~0.3keV, increasing B8 neutrinos

Physical events estimation

Nominal: Apply efficiency to the spectrum given by NEST

Oncertainty:

- Efficiency uncertainty: difference of MS and WS
- Light yield(LY) and charge yield(CY) uncertainty: anti-correlated floating(based on NEST 2.3.6 nominal value and uncertainty)

50

45

40

Туре	Run0	Run1
B8	18 <u>+</u> 4	25 <u>+</u> 6
ER	1.3 <u>+</u> 0.1	0.9±0.2

ER backgrounds are mainly Rn, Kr and tritium in detector. Other physical components like neutron are negligible

Unblind data

4-8nE	Run0	Run1	Run0+run1	•
Cathode	100±24	104 <u>+</u> 21	204±32	
MD	25±3	20±4	45±5	•
B8	18±4	25±6	43±7	•
ER	1.3±0.1	0.9±0.2	2±0.2	
Total	144 <u>+</u> 25	150 <u>+</u> 22	294±33	
data	158	174	332	

There is no significant excess in data

12

14

19

nElectron

— data

— MD

— ER

— B8

- cathode

- LDM fitting is ongoing
- We make a measurement of B8 solar neutrino flux combining this data and paired channel

B8 measurement

20

Do profile likelihood ratio(PLR) fitting for B8, combine both channelsFor US2 channel, a 2D fitting using S2 charge and width is performed

	Run0		Run1	
	2-hit	3-hit	2-hit	3-hit
Surface	$0.06 {\pm} 0.01$	$0.06 {\pm} 0.01$	$0.01 {\pm} 0.01$	0.02 ± 0.02
ER	0.01 ± 0.00	$0.00 {\pm} 0.00$	0.01 ± 0.01	$0.01{\pm}0.01$
Neutron	0.02 ± 0.01	$0.02{\pm}0.01$	0.03 ± 0.01	$0.03{\pm}0.01$
AC	1.08 ± 0.28	$0.07{\pm}0.02$	$1.15{\pm}0.35$	$0.24{\pm}0.08$
Total bkg.	1.16 ± 0.28	$0.15 {\pm} 0.02$	1.21 ± 0.35	$0.30 {\pm} 0.08$
$^{8}B CE \nu NS$	$1.00{\pm}0.24$	$0.24{\pm}0.09$	$1.76{\pm}0.50$	$0.40{\pm}0.18$
Observed	1	0	2	0

Paired channel estimation and data

B8 measurement

^(e) The best fit result tells that there are 75±28 B8 events in s2only channel and 3.5 ± 1.3 in paired channel, the corresponding B8 flux is $8.4\pm3.1\times10^6 cm^{-2}s^{-1}$

^(@)The p-value rejecting background only model is 0.004, with significance 2.64σ

Best-fit	paired	s2only
B8 number	3.5 <u>+</u> 1.3	75 <u>+</u> 28
P-value	0.	004
significance	2.64σ	

 $8.4 \pm 3.1 \times 10^{6} cm^{-2} s^{-1}$

This result has been submitted to arXiv:2407.10892

US2 background model for LDM search

Measurement of B8 solar neutrino flux through CEvNS, combining Run0 and Run1, US2 and paired channels

LDM result is ongoing

